ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертационную работу Миркина Андрея Леонидовича

«Математическое моделирование процессов миграции группы непрерывно работающих серверов»,

представленную на соискание учёной степени кандидата физико-математических наук по специальности 05.13.18 «Математическое моделирование, численные методы и комплексы программ»

Диссертационная работа посвящена проблемам переноса исполняющихся в виртуализованной среде приложений с одного компьютера на другой в режиме непрерывного обслуживания. Выбранное соискателем направление – виртуализация – с технической точки зрения является на сегодняшний день одним из наиболее популярных направлений в информационных технологиях. Имея возможность миграции процессов без их остановки с одного сервера на другой в кластерных системах можно эффективно управлять ресурсами (память, процессорное время и др.), от чего сильно зависит работоспособность всей системы, а также качество и скорость обслуживания пользовательских запросов. Однако до сих пор не проводился анализ подобных алгоритмов с научной точки зрения, не делались количественные оценки длительности задержек в их сопоставлении с экспериментами. Представляется, что это связано с уникальным характером рассматриваемого технического решения (существовавшие ранее технические решения были слишком просты, чтобы их стоило оптимизировать научными средствами). Эти обстоятельства позволяют говорить о том, что проведенное соискателем исследование обладает не только актуальностью, но и высокой научной новизной.

Первая глава работы носит обзорный характер – автор последовательно описывает существующие подходы к реализации систем сохранения и восстановления процессов и их ресурсов и анализирует их недостатки. В главе также формулируются основные требования к такой системе, и показывается несоответствие им рассмотренных алгоритмов. Затем автор рассматривает существующие системы виртуализации, кластеризации и балансировки нагрузки.

Вторая глава посвящена моделированию процессов сохранения и восстановления состояния группы исполняющихся приложений. Предлагаются алгоритмы сохранения и восстановления состояния и различные подходы для реализации. Затем в соответствии с моделью автором производятся оценки времени работы различных стадий алгоритмов сохранения и восстановления. За основу для реализации, предлагаемых алгоритмов, автором была выбрана рассмотренная система виртуализации OpenVZ — отечественная разработка, которая выделяется на фоне остальных, рассмотренных в первой главе.

Приведенные далее результаты тестов полностью согласуются с теоретическими оценками, полученными в этой главе.

В третьей главе описывается модель процессов миграции группы исполняющихся приложений в режиме непрерывного обслуживания с одного компьютера на другой. Предлагается три алгоритма миграции, и делаются оценки паузы в обслуживании для всех предложенных алгоритмов. Приведенные далее результаты экспериментов показывают, что полученные теоретические оценки верны.

В четвертой главе описана модель балансировки нагрузки, которая необходима для применения алгоритмов, рассмотренных в основной части работы, к кластеру, состоящему из нескольких компьютеров. Предлагается алгоритм и критерий переноса исполняющегося виртуального сервера с одного компьютера на другой. Следует заметить, что этот алгоритм на данный момент не реализован и поэтому может рассматриваться как задел для развития данного исследования в рамках некоторого технического решения.

В целом, работа производит весьма хорошее впечатление, несмотря на присущий области ИТ объективный недостаток математической сложности. Автором проведено серьезное исследование проблемы, рассмотрен широкий спектр разработанных подходов и аккуратно проанализированы их недостатки. Автор грамотно подошел к построению новых моделей, четко указал их ограничения, с их использованием разработал и успешно реализовал соответствующие алгоритмы.

Новизна полученных результатов и их научная ценность заключается в том, что впервые получены модели, описывающие процессы сохранения и восстановления состояния исполняющихся приложений и их миграции в режиме непрерывного обслуживания с одного компьютера на другой. Практическая значимость предложенных алгоритмов миграции приложений состоит в существенном повышении эффективности обслуживания пользователей, использующих эти приложения по сети.

Построенные в работе модели основываются на корректном применении теории алгоритмов, теории операционных систем и математического аппарата. Все утверждения подтверждены ссылками на источники. Результаты экспериментов соответствуют излагаемой теории. Это дает основание считать полученные результаты достаточно обоснованными и достоверными.

Из недостатков работы можно отметить следующие.

- 1. Обзор в первой главе некоторых устаревших подходов кажется излишним. Их стоило вынести во введение в виде исторической справки или совсем опустить.
- 2. В работе мало внимания уделено обоснованию важности проведенных оценок длительности; в частности, в результатах не приведено количественного

сопоставления длительности различных этапов процесса миграции (в типичных ситуациях), из которого была бы очевидна потребность в предложенных автором усовершенствованных алгоритмах.

- 3. Один из выводов работы «Показана эффективность ее (т.е. предложенной модели балансировки нагрузки) использования в кластерах с большим количеством компьютеров» сформулирован слишком амбициозно. Т.е. его можно признать обоснованным лишь при условии, что имеется ввиду качественный результат анализа (а не количественное исследование в зависимости от числа компьютеров).
- 4. В списке использованных источников следовало бы отделить собственно публикации (статьи, доклады, книги) от инструкций, описаний и других источников в Интернет, публикациями не являющихся.
- 5. Подразделы "Математическая модель" в главах 2-4 не содержат описания самой математической модели (которая описывается в других подразделах), а содержат лишь ограничения и обозначения модели.

Тем не менее, указанные недостатки не снижают ценности полученных результатов.

Заключение

Диссертационная работа А. Л. Миркина выполнена на высоком научном уровне. Результатом работы является решение важной задачи актуального направления в информационных технологиях. Приведенные результаты можно классифицировать как новые, обоснованные и имеющие большое практическое и научное значение.

Диссертация написана доходчиво, грамотно и аккуратно оформлена. Автореферат соответствует основному содержанию диссертации.

Работа отвечает требованиям Положения о порядке присуждения ученых степеней, а ее автор Миркин Андрей Леонидович заслуживает присуждения ему ученой степени кандидата физико-математических наук по специальности 05.13.18 «Математическое моделирование, численные методы и комплексы программ».

Кандидат физико-математических наук, доцент кафедры вычислительной математики МФТИ

А. В. Евдокимов

Подпись Евдокимова А. В. удостоверяю Ученый секретарь МФТИ

Ю.И. Скалько