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INTRODUCTION

The orientation of an artificial satellite of the Earth can be performed by both active and passive meth�
ods. In the development of passive systems for satellite orientation, one can use the properties of gravita�
tional and magnetic fields, the atmospheric drag effect, solar radiation pressure, and the gyroscopic prop�
erties of rotating bodies. An important feature of passive systems for satellite orientation is that they can
operate in orbit for a long time without spending energy and (or) a working body. Among passive orienta�
tion systems, the most widespread are the gravitational systems which operate based on the fact that in the
central Newtonian force field a satellite with unequal principal central moments of inertia has 24 equilib�
rium attitudes on a circular orbit, four of which are stable [1–3]. The use of rotors rotating with a constant
angular velocity relative to the satellite body makes it possible to obtain new and more complex equilib�
rium attitudes of the gyrostat satellite that are of interest for practical applications.

The problem of determining the equilibrium attitudes of a gyrostat satellite has been addressed in many
studies. The dynamics of satellites with gravitational orientation systems is considered in detail in [4]. In
[5–9], the equilibrium attitudes of a gyrostat satellite and their stability were investigated for the special
cases when the vector of the gyrostatic moment is parallel to one of the principal central axes of inertia of
the gyrostat satellite or is located in one of the planes formed by the principal central axes of inertia. The
equilibrium attitudes and their stability for an axisymmetric gyrostat satellite were considered in [10].

The general case of the problem was first considered in [11] presenting the theoretical results of a sym�
bolic–numerical study of equilibrium attitudes of a gyrostat satellite subjected to the action of gravity and
gyrostatic moments. It was shown that there are no more than 24 equilibrium attitudes in the orbital coor�
dinate system on a circular orbit for a gyrostat satellite with a given vector of gyrostatic moment and given
principal central moments of inertia.

In [12], a method based on algorithms for constructing Gröbner bases and on the concept of the result�
ant was used to investigate the equilibrium attitudes of a gyrostat satellite, determine the bifurcation values
of system parameters for which the number of equilibrium attitudes changes, and perform a detailed
numerical analysis of the evolution of the domains with a different number of equilibrium attitudes in the
space of parameters.
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Section 1 of this paper formulates the problem and describes the equations of rotational motion of a
gyrostat satellite under the action of gravity moment. Section 2 considers the symbolic–numerical
method for determining the equilibrium attitudes of a gyrostat satellite. Section 3 investigates the equilib�
rium attitudes of a gyrostat satellite for the given values of the problem parameters. Section 4 presents the
results of the study of sufficient conditions for the stability of the equilibrium attitudes of a gyrostat satellite
depending on four dimensionless parameters of the problem, using a generalized integral of energy as a
Lyapunov function.

1. EQUATIONS OF MOTION

We consider the motion of a gyrostat satellite (hereafter, referred also as satellite or gyrostat) as a solid
body with statically and dynamically balanced rotors located inside it. We assume that the angular veloc�
ities of rotor rotation relative to the satellite body are constant and the center of mass of the gyrostat sat�
ellite moves along a circular orbit. To write the equations of motion, we introduce two right�hand Carte�
sian coordinate systems with their origin located at the center of mass  of the gyrostat satellite.

 is the orbital coordinate system. The �axis is directed along the radius�vector connecting the
centers of mass of the Earth and the satellite; the �axis is directed along the vector of linear velocity of
the center of mass  of the satellite.

 is the coordinate system bound with the satellite;  are the principal central axes of iner�
tia of the satellite.

We determine the orientation of the coordinate system  relative to the orbital coordinate system
based on Euler angles  The direction cosines of the axes  in the orbital coordinate system
are expressed through the classical Euler angles by the relations [4]:

(1.1)

Then, the equations of motion of the gyrostat satellite relative to the center of mass can be written as [4,
11]

 (1.2)

 (1.3)

In Eqs. (1.2)–(1.3),  are the principal central moments of inertia of the  gyrostat;  and
 are the projections of absolute angular velocity of the gyrostat and constant projections of the
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vector gyrostatic moment on the axes , respectively;  is the angular velocity of the motion of
the gyrostat’s center of mass in a circular orbit. The dot denotes differentiation with respect to time t.

For equations of motion (1.2) and (1.3), the following generalized energy integral holds [4]:

(1.4)

2. EQUILIBRIUM ATTITUDES OF THE GYROSTAT SATELLITE

Assuming in (1.2) and (1.3) that ψ = ψ0 = const, , and

 we obtain for  the equations

(2.1)

which make it possible to determine the equilibrium attitudes of the gyrostat satellite in the orbital coor�
dinate system. Hereinafter, it is more convenient to use the equivalent system

(2.2)

which is obtained by projecting Eqs. (2.1) on the axes of the orbital coordinate system. Using the dimen�
sionless parameters , and , system (2.2) can be represented as

(2.3)

In view of (1.1), system (2.2) or (2.3) can be regarded as a system of three equations with unknown vari�
ables  Another method for closing Eqs. (2.2) is to add six conditions of orthogonality for direc�
tion cosines (1.1):

(2.4)

Equations (2.2) and (2.4) were solved for some special cases. For the case when the vector of the gyro�
static moment is parallel to one of the principal central axes of inertia of the gyrostat satellite (for example,

, all equilibrium attitudes were analytically determined depending on two
dimensionless parameters of the problem and sufficient conditions for the stability of these equilibrium
attitudes were obtained as simple inequalities [6–8]. The solution of the problem for the case when the
vector of the gyrostatic moment is parallel to the plane of any two principal central axes of inertia (for
example,  was considered in [5, 9]. Finally, the equilibrium attitudes and
their stability for the case of an axisymmetric gyrostat satellite  were ana�
lyzed in [10].

Then, we consider the equilibrium attitudes of the gyrostat satellite in the general case when
. Equations (2.2) and (2.4) form a closed algebraic system of equations for

nine direction cosines controlling the equilibrium attitudes of the gyrostat satellite. For this system of
equations, we formulate the following (direct) problem: for given values of  , it is
required to determine all the nine direction cosines, i.e., all the equilibrium attitudes of the gyrostat sat�
ellite in the orbital coordinate system.
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As shown in [11], Eqs. (2.2) and (2.4) can be solved with respect to 
for  in the following way:

(2.5)

where 
Substituting Eq. (2.5) into the first and third equations of (2.3) and adding the third equation of (2.4),

we obtain the system of equations [11, 12]

(2.6)

for determining the direction cosines . On solving system (2.6), formulas (2.5) make it possible
to determine the remaining six direction cosines. It should be noted that the right�hand side of the first

equation in (2.6) was multiplied by  to ensure homogeneity.
In view of the homogeneity of the first two equations in (2.6), we divide both sides of the first equation

by  and those of the second equation by  to obtain an algebraic system of two equations with respect
to the variables :

(2.7)

Then, substituting the expressions  into the last equation of system (2.6), we
obtain the expression

(2.8)

Equations (2.7) can be represented as

(2.9)

where

(2.10)

Excluding  from the system of two equations (2.9) with the help of the resultant concept, we obtain a
12th order algebraic equation with respect to x [12]:

(2.11)

the coefficients of which are sufficiently complex polynomials depending on the parameters 
It should be noted that the number of real roots of algebraic equation (2.11) is even and does not exceed 12.

Substituting the value of the real root  of Eq. (2.11) into the equations of system (2.9), we find the coin�
cident root  of these equations. For each solution , one can find two values of  from Eq. (2.8)
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and then their corresponding values  and  Thus, each real root of algebraic equa�
tion (2.11) corresponds to two sets of values  which uniquely determine the remaining
direction cosines  in view of (2.5). It follows from here that in the general case

 the satellite in a circular orbit under the action of gravitational moment
can have no more than 24 equilibrium attitudes.

3. STUDY OF EQUILIBRIUM ATTITUDES OF THE GYROSTAT SATELLITE

Equations (2.5), (2.9), and (2.11) make it possible to determine all equilibrium attitudes of the gyrostat
satellite subjected to the action of the gravitational moment for given values of the dimensionless param�
eters .

In studying the equilibrium attitudes of the gyrostat satellite, one should determine (in the space of
parameters) the domains with a same number of real roots of Eq. (2.11). The partition of the space of
parameters into domains with a same number of real roots of the equation is determined by the discrimi�
nant hypersurface, which is given by the discriminant of polynomial (2.11). The symbolic study of the sys�
tem of algebraic equations determining the set of singular points of the discriminant hypersurface seems
to be impossible because the expressions for the coefficients of polynomial (2.11) are cumbersome.

The dependence of the number of real solutions of Eq. (2.11) on the parameters was studied in [12],
which involves a detailed numerical analysis of the evolution of the domains of existence of different num�
bers of equilibrium attitudes in the space of dimensionless parameters. The numerical studies in [12] were
performed for the conditions   As an example, Fig. 1 shows domains with 24, 20, 16,
12, and 8 equilibrium attitudes for the parameter values  and .

Using the results of [10], one can show that for the limiting cases  and  (the cases of an axi�
symmetric gyrostat satellite) the boundaries between the domains with a constant number of equilibrium
attitudes are determined analytically.

For the axisymmetric case of the gyrostat satellite , the system of equations (2.3) is sim�
plified and, as a result, one can obtain equations of two circles in the plane :

(3.1)

which identify the boundaries of domains with a constant number of equilibrium attitudes of the satellite
(Fig. 2).
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For the axisymmetric case , the system of equations (2.3) is also simplified and then one
can analytically obtain equations for two astroids in the plane :

(3.2)

identifying the domains with a constant number of equilibrium attitudes (Fig. 3).

As shown in [10], in the case of an axisymmetric gyrostat satellite, there exist only 16, 12, and 8 equi�
librium attitudes, which correspond to three domains with the same number of equilibrium attitudes in
the space of parameters.
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4. STUDY OF SUFFICIENT CONDITIONS FOR THE STABILITY OF EQUILIBRIUM 
ATTITUDES OF THE GYROSTAT SATELLITE

Equations (2.11) and (2.9) coupled with system (2.5) make it possible to determine all equilibrium atti�
tudes of the gyrostat satellite for the given values of the inertial parameter and the components of the gyro�
static moment vector.

To study the sufficient conditions for stability of the resulting equilibrium attitudes of system (2.3)
and (2.4), we use generalized energy integral (1.4) as a Lyapunov function. This integral can be rewritten as

(4.1)

Let us present  as

where  are small deviations from the equilibrium attitude of the satellite 
 and  respectively, satisfying system of equations (2.3). Then, energy inte�

gral (4.1) can be written as
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is positive definite. We write the sufficient conditions for stability as inequalities
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For each set of parameters , we used the Mathematica numerical package to find the real
root of Eq. (2.11). For clarity of the representation of equilibrium attitudes of the gyrostat satellite, we
express the calculation results through Euler angles. Then, we have

and

The angle   is determined by the relation . The angle   is also
uniquely determined from relations (1.1):

Thus, for each real root of (2.11), one can uniquely find two sets of orientation angles  cal�
culate the coefficients of quadratic form (4.3), and check the conditions of its positive definiteness (4.5).

Since , for each real root , there exist two values  (  and ). It fol�
lows from the properties of the coefficients of quadratic form (4.3) that the sufficient conditions for sta�
bility (4.5) for  and  are the same. In addition, it can be shown that conditions (4.5) are independent
of the sign of parameters . Consequently, the sufficient conditions for the stability of equilibrium
solutions of Eqs. (2.3) can be numerically analyzed only for positive values of , one value of angle 
(  or ), and if the conditions  are satisfied (Fig. 4).

Figures 5–14 show the calculated dependence of the angle  on  for fixed values of , , and ; the
dotted line denotes the branches of equilibrium attitudes for which sufficient stability conditions (4.5) are
satisfied. Since the sufficient stability condition (4.5) for the angles  and   are the
same, the numerical results in Figs. 5–14 are shown for .

The calculations were performed for the following values of the inertial parameter: , ,
, and  (Figs. 5–14). It follows from the analysis of the calculation results for the given values
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Fig. 4. v = 0.2, h3 = 0.4.
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Fig. 5. v = 0.2, h2 = 0.1, h3 = 0.4 (24 equilibrium orientations, 4 stable orientations).
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Fig. 6. v = 0.2, h2 = 0.3, h3 = 0.4 (20 equilibrium orientations, 2 stable orientations).
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Fig. 7. v = 0.2, h2 = 0.5, h3 = 0.4 (16 equilibrium orientations, 2 stable orientations).
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Fig. 8. v = 0.2, h2 = 1.0, h3 = 0.4 (12 equilibrium orientations, 2 stable orientations).
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Fig. 9. v = 0.2, h2 = 2.0, h3 = 0.4 (12 equilibrium orientations, 2 stable orientations).
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Fig. 10. v = 0.2, h2 = 4.0, h3 = 0.4 (8 equilibrium orientations, 2 stable orientations).
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Fig. 11. v = 0.6, h2 = 0.5, h3 = 2.0 (12 equilibrium orientations, 4 stable orientations).
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Fig. 12. v = 0.6, h2 = 4.0, h3 = 0.01 (8 equilibrium orientations, 2 stable orientations).
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of the parameters that for  and for small values of  there exist 24 branches of equilibrium
attitudes, and the stability conditions (4.5) are satisfied for four branches of these 24 (Fig. 5). There exist
also four stable equilibrium attitudes for  and  (Figs. 11, 13, and 14).
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0.5ν > 3 1h ≥ − ν

1.5

0.5

1.0

0.5

0 1.0 1.5 2.0
h1

2.5

2.0

2.5

3.0

3.5
ϕ

Fig. 13. v = 0.7, h2 = 0.5, h3 = 2.0 (12 equilibrium orientations, 4 stable orientations).
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Fig. 14. v = 0.9, h2 = 0.5, h3 = 1.0 (12 equilibrium orientations, 4 stable orientations).
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When the parameter  increases, the branches of equilibrium attitudes gradually merge at the points
corresponding to the points of intersection of line  with the boundaries of the domains with an
equal number of equilibrium attitudes. For example, Fig. 4 ( ) shows that there exist four
points of intersection of the line h2 = 0.1 with the boundaries of an equal number of equilibrium attitudes

,  , and ; Fig. 5  shows that at
these points the branches of the equilibrium attitudes merge.

For the values of gyrostatic moment parameters  greater or equal to four, there exist only eight
equilibrium attitudes (Figs. 10 and 12) and only two of them are stable. For large values of , the
equilibrium values of the angle  approach trivial solutions, when one of the axes of the orbital coordinate
system coincides with one of the axes of the coordinate system bound with the satellite. The character of
stability of equilibrium attitudes corresponds (depending on the problem parameters) to the character of
the stability of equilibrium attitudes for the axisymmetric case [10]; here, it was shown that the number of
equilibrium attitudes of the gyrostat satellite for which the sufficient conditions for stability are satisfied
varies from four to two as the magnitude of the gyrostatic moment increases (as in the general case).

CONCLUSIONS

This is a study of the rotational motion of a gyrostat satellite relative to the center of mass in a circular
orbit under the action of gravitational moment. The emphasis is on the study of the stability of equilibrium
attitudes of the gyrostat satellite. A symbolic�numerical method is proposed for determining all the equi�
librium attitudes of the gyrostat satellite in the orbital coordinate system for the given values of the gyro�
static moment vector and principal central moments of inertia in the general case, when  and

. It is shown that the number of equilibrium attitudes of the gyrostat satellite in a cir�
cular orbit in the general case is less than or equal to 24 and cannot be less than eight.

For each equilibrium attitude, sufficient conditions for stability are applied using a generalized energy
integral such as a Lyapunov function. A detailed numerical analysis of the domains that hold the condi�
tions of stability of equilibrium attitudes is conducted depending on four dimensionless parameters of the
problem. It is shown that the number of equilibrium attitudes of the gyrostat satellite for which the suffi�
cient conditions for stability are satisfied varies from four to two (in the general case) as the gyrostatic
moment magnitude increases. The results obtained in this paper can be used for the preliminary construc�
tion of passive gravitational systems of control over the orientation of a satellite.
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