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The feature of the occurrence and development of classic flutter for rotor stage blades of the blisk
(bladed disk) type for an axial turbocompressor in aircraft engines is that flutter at the natural frequency
of blades is preceded with the resonance on the other natural frequency of the blades, which is caused by
the torsion frequency harmonic of the rotor. With increasing the rotor speed, the resonance development
interrupts as a result of the occurrence of flutter—synchronous vibrations of blades at their natural fre�
quency, which is not connected by any numerical relationships with the rotor speed. The synchronization
of vibrations of rotor blades in the aeroelastic system occurs because of the elasticity of the compressed air
flow, in which acoustic diametral modes of pressure pulsations appear during flutter. The flutter of tur�
bocompressor rotor blades is described by the model of circular modes of synchronous vibrations:
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in which blades of the rotor stage vibrate with natural frequency fB of blades and constant phase shift
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where Nb is the number of blades in the rotor stage of the tur�
bocompressor. The precedence of resonance to flutter, however,
with the competition of resonance and flutter for only one vibra�
tion mode of rotor blades, is established in [1].

The dependence of rotor speed fR on the time to occurrence
of the bending flutter of blades of the first stage at fR ≈ 60 Hz dur�
ing the test of the blisk type rotor of the turbocompressor consid�
ered is represented in Fig. 1. It is established [2] that torsion
modes of blades with frequency fT ≈ 178 Hz, which is close to
harmonic 3fR of the rotor speed, are primarily excited in the time
interval t = 4, …, 20 s. With increasing rotor speed, the reso�
nance departure at frequency fT of the torsion mode of blades
occurs, and in time interval t = 17.4, …, 24.6 s flutter with a pos�
itive damping factor (logarithmic decrement with the opposite
sign) occurs at a lower bending frequency of the blades,
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fB ≈ 81 Hz. The nonlinear model with antisymmetrical elastic force F(–x) = –F(x) predicts bending vibra�
tions of blades, x = x(t) with the spectrum containing only odd harmonics of natural frequency fB [3].

The linear reaction of the flow on the flutter of rotor blades is acoustic diametral modes of flow pressure
pulsations [4]. In the rotor reference system they present single�frequency pulsations with the frequency
of synchronous bending vibrations of blades, fB ≈ 81 Hz. The nonlinear flow reaction is described by Rey�
nolds�averaged Navier–Stokes equations for the field of flow rates [5]. The Reynolds averaging over an
ensemble for air flow in the axial turbocompressor for Navier–Stokes equations is obtained by averaging
the instantaneous scalar and vector fields of flow for instants of time which differ by sequential periods of
the rotor revolution [6]. The ensemble averaging gives the deterministic (coherent) unsteady�state density
of flow

,

where {z, r, ϕ} are cylindrical coordinates; TR is the period of rotor revolution; and t = [0, kTR], where k
is the integer.

Components υα(z, r, ϕ, t), α = {z, r, ϕ} of the instantaneous field of flow rates are determined by the
ensemble averaging weighted by the density (Favre averaging)

 (3)

α = {z, r, ϕ},

where t = [0, kTR], where k is the integer.

The instantaneous field of flow rates is decomposed in the deterministic (coherent) (3) and stochastic
(fluctuating) field of rates

, (4)

where from (3) follows  and α = {z, r, ϕ}.

The ensemble averaging of Reynolds for Navier–Stokes equations is represented in [6, 7]. The nonlin�
ear equation for the axial moment has the form 

(5)

Additive terms in (5) in comparison with Navier–Stokes equations are Reynolds stresses
, and α, β = {z, r, ϕ} in the form of correlation of stochastic fields from (4).

Equation (5) describes the nonlinear reaction of the field of flow rates on the vibration of surfaces of
rotor blades on its boundaries. In the case of the single�frequency vibration of blades, xb = Ax sin(2πfBt),
the time dependence of deterministic (coherent) components 〈υz〉 and 〈υϕ〉 of the flow rate field is repre�
sented by Fourier series

(6)

In (6) the terms with the first harmonic describe the ensemble�averaged (3) linear reaction of flow,
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with bending frequency fB of blade vibrations. By the method of harmonic balance, terms with the second
harmonic of the bending frequency in (6) are considered as disturbances in (5) by nonlinear terms
〈ρ〉〈υα〉〈υβ〉, α, β = {z, r, ϕ} in the form

(7)

The average value  for M = 100–1000 sequential instantaneous fields of
flow rates is used in experimental investigations of flow in axial turbocompressors as the evaluation of
Reynolds stresses in (5) [10]. This evaluation also contains the contribution of the coherent field of
flow rates (3).

The record of pulsations of flow pressure p = p(t) in the first stage stator of the axial turbocompressor
considered with increasing rotor speed to fR ≈ 60 Hz is given in Fig. 2 (sampling frequency ≈20 kHz during
recording). In the coordinate system connected with the rotor, every circular mode of synchronous vibra�
tions of blades (1) with number m of nodal diameters (2) corresponds to the circular mode of flow pressure
pulsations with the same number m of nodal diameters, which is called as the acoustic diametral mode of
order m. Let ϕ be the angle along the rotor stage circumference. In the coordinate system connected with
the rotor, the formula similar to (1) for the ensemble�averaged distribution of the air flow pressure subject
to second harmonic fB has the form

. (8)

Transition into the reference frame connected with the stator of the axial turbocompressor (with fixed
guide blades) corresponds to transform ϕ  ϕ + 2πfRt (fR is the rotor speed). Formula (8) takes the form

(9)
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From (9) follows that lowest frequencies  and  of the acoustic mode with m nodal diameters for
pressure pulsations of air flow are determined by formulas

, (10)

. (11)

Figure 3 shows spectral component amplitudes a = a(f), determined by a fast Fourier transform, rela�

tive to the amplitude at frequency  ≈ 201 Hz of the second acoustic diametral mode for the record of
flow pressure pulsations (Fig. 2). The frequency spectrum (Fig. 3) contains frequencies of acoustic diame�

tral modes, , m = 1, …, 7 (10) and , m = 1, …,5 (11), and also rotor speed harmonics fR, m = 1, …,
7. In the case of transition into the reference frame connected with the stator of the axial turbocompressor,
rotor speed harmonics present in flow pressure pulsations are transformed by the formula similar to (10)
and (11) therefore they always are present in records of flow pressure pulsations, providing resonance at
circular frequency fT ≈ 178 Hz which precedes the bending flutter of blades.

The time�dependent spectral parameters of the record of flow pressure pulsations (Fig. 2) are deter�
mined by the Proni method [2]. The spectral decomposition of an arbitrary segment with length N for the
total record of flow pressure pulsations (time series) pk = p(kΔt), k = 1, …, N0 (below for short, it is con�
sidered that the time discretization interval Δt = 1) has the form

, (12)
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where M is the number of poles for the segment;
, l = 1, …, M are poles (δl and fl are the

damping factor (logarithmic decrement with the opposite
sign) and the frequency, respectively); rl = Alexp(jϕl), l = 1,
…, M are pole residues (Al and ϕl are the amplitude and the
phase, respectively); and nk is the additive noise.

The time dependence of spectra of damping factors and
frequencies, {δl, fl, l = 1, …, M}, and spectra of amplitudes
and phases corresponding to them, {Al, ϕl, l = 1, …, M}, is
estimated by the record in Fig. 2 as a result of sequential non�
integral shifts of the time window with fixed length N = 2000
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(time window size of 0.1 s). The most demonstrative evidence of nonlinearity of flow pressure pulsations

in Fig. 3 is the small amplitude at frequency  ≈ 141 Hz in comparison with the amplitude at frequency

 ≈ 222. However, the damping at this frequency can not be estimated because of the very large ampli�

tude on neighboring frequency  ≈ 201 Hz.

Figure 4 shows time dependences of frequencies derived from fB:  (solid line) and  (dashed line).
They reproduce the time dependence of rotation frequency fR (Fig. 1) by formula (10). Figure 5 shows

time dependencies of the damping factor for frequencies derived from fB (10):  (solid line) and 

(chain line) and frequencies derived from the second harmonic of fB (11):  (dashed line) and  (dot�

ted line). The damping factor at frequencies  (dashed line) and  (dotted line) at t = 22 s (flutter
establishment) abruptly changes its value to plus. This abrupt increase in the damping factor repeats with
the flutter disappearance at t = 55.7 s i.e., energy in flow pressure pulsations is redistributed between fre�
quencies derived from fB (10) and frequencies derived from 2fB (11). In Fig. 3 after t = 58.3 s, frequency

≈ 222 Hz derived from harmonic 2fB generally prevails in residual pulsations of flow pressure. There�
fore, the presence of the second harmonic of blade bending frequency fB ≈ 81 Hz in the record of vibra�
tions of blades of the first stage of the rotor investigated in [2] is caused by air flow pressure pulsations
(Fig. 2).

At present, in the framework of the European Research Project FUTURE (Flutter�Free Turboma�
chinery Blades), the theoretical analysis of flow ensemble�averaged with respect to velocity field is carried
out for the estimation of the degree of flow nonlinearity as the condition of limitation in the flutter ampli�
tude for blades of the rotors of axial turbocompressors [11, 12].
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