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1. INTRODUCTION

In modern problems for simulating spatial dynamic processes in complex heterogeneous environments,
increasingly complicated mechanical mathematical models have to be introduced. Numerical experiments
in seismic prospecting and seismology are among such problems.

Nowadays, seismic processing is one of the most common ways of investigating rocks before deep�hole
drilling. Numerical experiments make it possible to obtain significantly refined interpretation results for seis�
mic prospecting data and optimize the oil extraction process. In order to perform such numerical experi�
ments, highly accurate simulation in geological environments with a large number of nonhomogeneities,
such as cavities and cracks, of different shapes and with no strict patterns in their placement is required.

Simulation of earthquakes is a topical problem as well. Wave patterns obtained in the depth, at the surface,
and for the objects at the surface make it possible to determine possible damage areas for housing and indus�
trial premises and thereby increase their seismic resistance. 

When this statement of spatial problems is accepted, unstructured tetrahedral meshes have to be used.
Since the system of equations for the mathematical model of the states of a continuous linearly elastic

medium [1] is hyperbolic, and highly accurate calculation of wave processes is required, the grid�character�
istic method [2] using high�order [4] interpolation [3] is the optimal choice. The examples of the grid�char�
acteristic method using quadratic interpolation with a limiter on unstructured tetrahedral meshes applied to
solving seismic prospecting problems may be found in [5, 6]. The examples of application of the grid�char�
acteristic method using high�order interpolation on tetrahedral meshes may be found in [7, 8].

Transition from two�dimensional to spatial problems results in higher volumes of data. Therefore, high�
performance computational systems have to be used. The developed algorithm was parallelized, and optimal
use of the resources of the computational cluster was ensured.

In order to obtain thorough and detailed descriptions for all wave processes in the vicinity of all nonho�
mogeneities present in the problem, a rather detailed mesh has to be used. The smaller the heterogeneous
inclusions to be studied, the more time steps and operations at each time layer have to be performed. How�
ever, in most cases, nonhomogeneities are localized within a small volume inside the integration domain.
The use of hierarchical meshes with condensations at the locations of the nonhomogeneities is optimal for
the given statement of the problem. 
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In grid�characteristic methods, time integration steps depend directly on the size of the minimum space
steps. Thus, the use of standard hierarchical meshes does not reduce the number of time steps but only
reduces the number of operations at each time layer.

The performed theoretical and numerical investigations showed that the use of grid�characteristic meth�
ods makes it possible to use dedicated hierarchical meshes with a multiple step. In addition to a multiple
space step, a multiple time step may be introduced, which will reduce not only the number of operations
required for integrating problems at each time layer but also the number of time steps carried out in the seg�
ment of the integration domain with no heterogeneities and with a coarser mesh.

2. STATEMENT OF THE PROBLEM

According to [1], the state of the continuous linearly elastic medium with infinitely small volume satisfies
the following equations:

(1)

(2)

Equation (1) is a local motion equation. Here, ρ is the density of the material, v is the motion speed, and
σ is the Cauchy stress tensor, which is symmetric due to the pair law for shearing stresses [1]. Equation (2) is
derived from Hooke’s law by time differentiation. Here, λ and μ are Lame parameters, which determine the
properties of the elastic material.

The following mathematical notation is used in (1), (2), and below:

 ≡  is the partial derivative of the field a with respect to t;

 is the tensor product of vectors a and b,  = 
I is the second�rank unit tensor.

3. NUMERICAL METHOD

The grid�characteristic method on tetrahedral meshes making it possible to construct correct numerical
algorithms for calculating boundary points and points lying at the interfaces of two media with different
Lame parameters and (or) densities is used for the numerical solution of system (1) and (2).

Three arbitrary directions are selected as the basis at each time integration step, which ensures the
method’s isotropy, and new coordinates  are introduced. System (1), (2) may be represented in
these coordinates as follows:

(3)
In (3), vector q implies the vector composed of three speed components and six components of the sym�

metric stress tensor

For each of the three systems written as

(4)
the following precise expression is fulfilled:

(5)

Here, Xi are certain matrices expressed using the components of matrix A1, ci are the eigenvalues of matrix
A1, and τ is the time integration step.

The eigenvalues of all three matrices are expressed using density and Lame coefficients as follows:

(6)

When high�order interpolation is used in (5), and formulas similar to (5), which correspond to a system
similar to (4), are successively applied to directions ξ1, ξ2, and ξ3, we find a way of obtaining solutions at the
next time layer. Interpolation with orders ranging from the first to the fifth orders inclusively may be per�
formed using the given software, which makes it possible to carry out numerical space integration of the solu�
tion highly accurately. In addition, the use of matrices Xi is implemented via two operators, which reduces
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the number of interpolations for each point and each direction from
nine to six.

4. BOUNDARY AND CONTACT CORRECTORS

The applied method makes it possible to use the most precise com�
putational algorithms at the boundaries and contact interfaces of the
integration domain.

Let us have the boundary condition written in matrix form as fol�
lows:

(7)

Here,  are the values of the speed components and
the stress tensor at the next integration step at the boundary point.

According to (6), there are three zero, three positive, and three neg�
ative eigenvalues for each matrix Aj. For the sake of definiteness, we
assume that the characteristics corresponding to the negative eigenval�
ues of matrix A1 are beyond the integration domain along direction ξ1.

( )1 2 3, , , .tξ ξ ξ + τ =Dq d

( )1 2 3, , ,tξ ξ ξ + τq

Then, the following is derived at the stage of calculating the inner points according to (5):

Matrix  is composed of eigenvectors which correspond to negative eigenvalues.
At the boundary point, the corrector acts according to the following formula:

(8)
and condition (7) is fulfilled with the order equal to that of interpolation.

Matrix  is obtained in (8) in such a way that

and matrices Φ and F are calculated using the following formulas:

 

In order to solve various problems, the boundary conditions with the prescribed external force and
boundary speed, mixed boundary conditions, and nonreflecting boundary conditions based on the equality
of the output characteristics to zero may be used. Equation (7) for nonreflecting boundary conditions is as
follows:

The contact condition of complete adhesion is implemented using the corrector with prescribed speed.
The contact condition of free slipping is calculated using the corrector for mixed boundary conditions. In

this case, the speed vector and the normal speed component are calculated based on values 
for two contacting bodies. The example of the mesh with a parabolic layer limited by the contact surfaces is
presented in Fig. 1.

5. INTERPOLATION IN A TETRAHEDRON

In order to determine a polynomial field with degree N, which depends on x, y, and z, the values at

 reference points should be known.

The following method of arranging reference points is suggested. The planes parallel to the faces of the
tetrahedron ABCD, which divide each of its edges into N equal parts, are drawn within the tetrahedron. The
reference points are numbered in the way shown in Fig. 2 for the tetrahedron, with N = 3.

The planes divide the tetrahedron into smaller tetrahedra similar to it and octahedra. When N = 2, we
obtain four smaller tetrahedra and one octahedron, as shown in Fig. 3.
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The Courant number [2] is calculated
based on the minimum height among all
smaller tetrahedra.

We indicate the vectors of the tetrahedron
vertices as rA, rB, rC, and rD. The weights of ref�
erence points  are calculated for each
given N using the corresponding formulas.
The value of the polynomial at the desired
point r is defined using the formulas

(9)

In formula (9),  =  indicates
the value of the interpolated function at the
reference point 

The algorithm for constructing interpo�
lants with limiters on tetrahedral meshes based
on interpolation by the N�degree polynomial
is as follows.

(1) The value of the trial function at the
given point r is determined using polynomial
interpolation with degree N. Let the said value
be 

(2) We determine to which smaller tetrahe�
dron or octahedron the point r belongs. If the
point is within the octahedron, then the octa�
hedron is divided by an axis into four tetrahe�
dra, which have volumes equal to those of the
other smaller tetrahedra, but are not similar to
them (the axis may be drawn in three possible
ways). After that, we determine to which of
these four tetrahedra the point belongs.

(3) We compare  to the minimum m
and the maximum M of the values at the verti�
ces of the tetrahedron:

(3.1) If m ≤  ≤ M, then the interpo�
lant value at r is 

(3.2) If  < m, then the interpolant
value at r is m;

(3.3) If  > M, then the interpolant
value at r is M.

The use of interpolation with a limiter
makes it possible to eliminate nonphysical
oscillations of polynomials, which occur in the
presence of discontinuities in the interpolated
polynomial functions.
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6. HIERARCHICAL MESHES WITH MULTIPLE TIME STEP

The principles of using hierarchical meshes with a multiple step will be explained below for the multiplic�
ity of two using the following system of equations composed of two transfer equations as an example:

(10)

(11)
This system of equations (10) and (11) is hyperbolic. Therefore, the following expressions are fulfilled for

its solution:
(12)
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0,t xu u+ =

0.t x− =v v

@ @( , ) ( , ),u t x u t x+ τ = − τ

,@ @( , ) ( , )t x t x+ τ = + τv v

A

A

A

B B

B

CC

C

D

D

D

0030

1020

2010 1110

00210120

0210

0030

0120

0210 00120111

3000
3000

2100
2100

1200
1200

0300
0300

2001

1002

0003

02011101

2001

3000

2010

1020

0003
00030300

0021

0102

1002 1011

0012
0102

0030
0201

Fig. 2

A

A

A

BB

B

C

C

D

D

D

1010

2000 0200

11002000

1100

0200

0020

0110

0200

0002 0011

0101 0002

0020

1001

C
0020

0011

0101 10101001

0110

0002 2000

Fig. 3



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 5  No. 5  2013

GRID�CHARACTERISTIC METHOD USING HIGH�ORDER INTERPOLATION 413

(14)

(15)
In (12)–(15), x@ indicates the coordinate, to the left of which the

mesh is fine and to the right of which it is coarse (Fig. 4), t is the cur�
rent time, and τ is the time integration step in the domain with the fine
mesh. Correspondingly, the step in the domain with the coarse mesh
will be 2τ.

In the course of solving the system of state equations for a linearly
elastic medium, two ways of calculating boundary points with coordi�
nate x@ may be considered using the following principle: the values of
the characteristics are calculated at various points depending on time
and the mesh size in the domain to which the characteristic belongs
and summed; or the corrector based on the contact corrector of com�
plete adhesion is used at the boundary. It was found in the process of
mathematical and numerical investigations that the generalization of
the second approach for salient points is better, and nonphysical oscil�
lations do not arise at these points when this approach is used. 

The example of a hierarchical tetrahedral grid with a multiplicity
of two is presented in Fig. 5. The result of numerical simulation of the
passage of a seismic wave through such a grid is presented in Fig. 6; the
calculation is performed with multiple time step. The second�order
polynomial interpolation was used at the reference points for the
fourth order without a limiter. The speed modulus corresponds to the
density of the visualized environment. It can be seen that no nonphys�
ical oscillations arise, even when such a weak interpolator is used.

6. RESULTS

The following six problems are considered: 
(1) Numerical simulation of a frontal collision with a face of a

cube. 
(2) Numerical simulation of a spherical explosion at the center of

a cube. 
(3) Numerical simulation of a near�surface seismic spherical

explosion in a linearly elastic medium. 
(4) Numerical simulation of an earthquake in the Earth’s crust. 
(5) Numerical simulation of the passage of a seismic wave through

the interface of two media having a parabolic shape.
(6) Numerical simulation of the passage of a seismic wave through

the layer with different elastic parameters and with parabolic bound�
aries.

,@ @( 2 , ) ( , )u t x u t x+ τ = + τ − τ

.@ @( 2 , ) ( , 2 )t x t x+ τ = + τv v

The integration domain in all six cases is a cube in which the unstructured tetrahedral mesh required for
each particular problem is generated. The free boundary condition is set on all sides of the cube. The speed
modulus corresponds to the density of the visualized environment in all the figures.

Interpolation with a limiter on a cubic basis was used in the first four problems. Second�order interpola�
tion with a limiter was used in the fifth problem, and second�order interpolation on fourth�order points
without a limiter was used in the sixth problem. 

The result of the numerical simulation of a frontal collision with the center of a wall of a cube is presented
in Fig. 7, and the result for a spherical explosion at the center of a cube is presented in Fig. 8. In both prob�
lems, the mesh is composed of about 200 000 tetrahedra not divided into auxiliary ones; nearly 100 time steps
were carried out.

The result of the simulation of a near�surface seismic explosion is presented in Fig. 9, and the result of
earthquake simulation is presented in Fig. 10. In these two problems, the mesh is composed of about 500 000
undivided tetrahedra. In order to simulate the near�surface explosion, 1200 time steps were performed, and
700 steps were performed for the earthquake simulation.

Fig. 4

Fig. 5

Fig. 6
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The pattern of arising waves may be seen in the first four problems. These are bulk seismic longitudinal
and transverse waves, as well as surface seismic Rayleigh waves. The white vectors indicate the direction of
speed.

The result of numerical simulation of the passage of a seismic wave through the interface of two media
having a parabolic shape is presented in Fig. 11. The edge of the seismic cube is 200 m. In this problem, the
mesh consists of 64 000 nodes. About 400 time steps were performed, which corresponds to 1.5 seconds. The
parameters of the environment above the interface are as follows: the speed of the longitudinal seismic waves
is cp = 4230 m/s, the speed of transverse seismic waves is cs = 3000 m/s, and the density of the environment
is ρ = 2400 kg/m3. The parameters below the interface are cp = 2115 m/s, cs = 1500 m/s, and ρ = 2400 kg/m3.
The seismic wave reflected from the parabolic layer can be seen in Fig. 11, and the Berlage pulse distorted
after passing through the interface of two media having a parabolic shape may be seen above the wave.

The result of the numerical simulation of the passage of a seismic wave through a layer with different elas�
tic parameters and with parabolic boundaries is presented in Fig. 12. The mesh presented in Fig. 1 consists
of about 70 000 nodes. Two reflected waves can be seen in Fig. 12. The first wave (the upper one in the figure)
was reflected from the upper boundary of the interface between two media, and the second one was reflected
from the lower boundary. In addition, the distortion of the shape of the wave that passed through the layer
can be seen (the lowest of the three in the figure).

Fig. 7 Fig. 8

Fig. 9 Fig. 10
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