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1. EQUATIONS OF MOTION
Consider the motion of a satellite, a rigid body, with

respect to its center of mass in a circular orbit subject
to gravitational and aerodynamic torques. To write the
equations of motion, we introduce two right Cartesian
coordinate systems with their origin at the center of
mass O of the satellite.

 is the orbital coordinate system. The 
axis is directed along the radius vector connecting the
centers of mass of the Earth and the satellite; the 
axis is directed along the vector of linear velocity of the
satellite’s center of mass O.

 is a coordinate system tied to the satellite; 
  are the principal central axes of inertia of the

satellite.
We define the orientation of the coordinate system

 with respect to the orbital coordinate system
with using the Euler angles ψ, ϑ, and ϕ. The direction
cosines of    axes in the orbital coordinate
system are expressed in terms of Euler’s angles by
means of relations [1]:

(1)

OXYZ OZ

OX

Oxyz ,Ox
,Oy Oz

Oxyz

,Ox ,Oy Oz

11

12

13

21

22

23

31

cos( , ) cos cos sin cos sin ,

cos( , ) cos sin sin cos cos ,

cos( , ) sin sin ,

cos( , ) sin cos cos cos sin ,

cos( , ) sin sin cos cos cos ,

cos( , ) cos sin ,

cos( , )

a x X

a y X

a z X

a x Y

a y Y

a z Y

a x Z

= = ψ ϕ − ψ ϑ ϕ

= = − ψ ϕ − ψ ϑ ϕ

= = ψ ϑ

= = ψ ϕ + ψ ϑ ϕ

= = − ψ ϕ + ψ ϑ ϕ

= = − ψ ϑ

= =

32

33

sin sin ,

cos( , ) sin cos ,

cos( , ) cos .

a y Z

a z Z

ϑ ϕ

= = ϑ ϕ

= = ϑ

Then the equations of motion of the satellite with
respect to its center of masses will be written as [1, 2]:

(2)

(3)

In equations (2), (3)

 are the principal central moments of inertia of
the satellite;  are the projections of satellite’s
angular velocity on the    axes; ω0 is the angu�
lar velocity of motion of satellite’s center of masses
over a circular orbit; Q is the drag force acting on the
satellite;  are the coordinates of the center of
pressure of the satellite in the coordinate system 
The dot indicates differentiation with respect to time t.

Equations (2), (3) are derived under the following
assumptions [1]:

1) the effect of the atmosphere on the satellite is
reduced to drag force applied at the center of pressure
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and directed against the velocity of satellite’s center of
mass relative to the air;

2) the atmospheric effect on the translational
motion of the satellite is negligible;

3) atmospheric drag by the rotation of the Earth is
neglected.

Assumption 1) is rather accurately fulfilled for a
shape of the satellite close to spherical.

For the equations of motion (2), (3) the generalized
energy integral is valid [1]

(4)

2. EQUILIBRIUM POSITIONS OF SATELLITE

Letting   
 in (2) and (3), we obtain for  the

equations

(5)

which allow us to determine the equilibrium positions
of the satellite in the orbital coordinate system. In fur�
ther investigation, it is more convenient to use the
equivalent system

(6)

which is obtained by projecting equations (5) on the
axes of the orbital coordinate system. The system (6),
with using the dimensionless parameters

  ν = , can
be presented as follows:

(7)

With regard to (1), the system (6) or (7) can be con�
sidered the system of three equations with unknowns

 Another way of closing equations (6) or (7)
consists in adding six conditions of orthogonality of
direction cosines
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The system of equations (6), (8) is solved for some
special cases. In papers [2, 3], for the case where the
center of pressure of aerodynamic forces was located on
one of principal central axes of inertia of the satellite

   all equilibrium posi�
tions of the satellite in the orbital coordinate system
were determined analytically. For each satellite’s equi�
librium position, both the sufficient and necessary con�
ditions of stability were obtained. The evolution of the
domains of stability was studied, depending on two
dimensionless parameters of the problem. The more
complicated case, where the center of pressure of aero�
dynamic forces laid in one of satellite’s principal central
planes of inertia     was
considered in [4]. There, a method was proposed for the
numerical determination of all equilibrium positions
depending on three dimensionless parameters of the
problem; the sufficient conditions of their stability were
obtained. And, finally, in paper [5] the equilibrium posi�
tions of the axisymmetric satellite were investigated

   

Further, we will investigate satellite’s equilibrium
positions in the general case   

 using systems (6) and (8).

Equations (6) and (8) form a closed algebraic sys�
tem of equations with respect to 9 unknown direction
cosines that determine the equilibrium positions of a
satellite. For this system of equations, the following
problem is stated: for the given  , it is
necessary to find all nine direction cosines, i.e., all
equilibrium positions of the satellite.

As it was shown in [1, 2], the system of equations (6),
(8) can be resolved with respect to   
for  in the following manner:
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for determining the direction cosines 
After solving system (10), formulas (9) make it possi�
ble to determine the remained six direction cosines.

Equations (9) and (10), after the transition to
dimensionless parameters, take the form

(11)

(12)

Note that the right�hand part of the first equation

of (12) is multiplied by  +  +  = 1. Taking into
account the homogeneity of the first two equations of
system (12), we divide both parts of the first

equation  both parts of the second equation by 
and obtain the system of two algebraic equations with
respect to variables x =  y = 
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Further, substituting the expressions 
 into the last equation of system (12), we

obtain the expression
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The system of equations (13) can be represented in
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where

(16)

The resultant  of equations (15) has the following
form:

The equation , using the symbolic func�
tions of the computer algebra system Mathematica,
can be presented in the form

(17)

where

…

Coefficients pi  represent very cumbersome
expressions (these coefficients are presented com�
pletely in [6]).

The number of real roots of the obtained algebraic
equation (17) is even and does not exceed 12. Substi�
tuting the value of the real root  of equation (17) into
the equations of system (15), we find the coinciding
root  of these equations. For each solution , we
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can determine two values of  from equation (14),
and then find the quantities  and 
corresponding to these values of . Thus, each real
root of the algebraic equation (17) is associated with
two sets of values  which, in virtue of (11),
uniquely determine the remaining direction cosines

   It follows from the above consid�
erations that the satellite in a circular orbit, subject to
gravitational and aerodynamic torques, can have not
more than 24 equilibrium positions in the general case

   .

3. STUDY OF EQUILIBRIUM POSITIONS 
OF THE SATELLITE

Equations (15) and (17), together with systems (11)
and (12), allow us to determine all equilibrium posi�
tions of the satellite subjected to gravitational and
aerodynamic torques for the given values of problem’s
parameters.

To study the satellite’s equilibrium positions, we
state the problem of finding, in the parametric space,
regions with an identical number of real roots of equa�
tion (17). The separation of the parametric space into
regions with an identical number of real roots is deter�
mined by the discriminant hypersurface, which is
specified by the discriminant of polynomial (17). The
system of algebraic equations that defines the set of
singular points of the discriminant hypersurface can�
not be investigated in the symbolic form because of the
cumbersome character of the expressions for the coef�
ficients of polynomial (17).

The dependence of the number of real solutions of
equation (17) on the values of parameters was studied
numerically using the factorization package of the sys�
tem Mathematica 8.0, which allows us to calculate the
roots of algebraic equations to a specified accuracy.

Without losing generality, numerical investigations
can be performed under the condition  then

 Projections of the aerodynamic torque vec�
tors  can assume any nonzero values.

Coefficients of equation (17) depend on 4 dimen�
sionless parameters  and the equations of the
original system (6) include 6 parameters: 

 In the numerical investigation of the problem,
the decrease of the number of parameters is an essen�
tial factor.

As it was shown in [5], for the extreme cases 
and  (cases of the axisymmetric satellite) the
boundaries between the regions with a constant number
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of equations (7) is simplified, and, as a result, one can
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For the axisymmetric case  , the system
of equations (7) is also simplified, and, as a result, one
can obtain the equations of two asteroids in the plane
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with a constant number of equilibrium positions of the
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The numerical analysis of the number of real roots
of equation (17) was performed with positive values of
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equation (17) was determined at 107 nodes with a step
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constant number of real roots at grid nodes with a step
of 0.0001. 
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accuracy by the bisection method, which was imple�
mented in the programming language of the Mathe�
matica system in a package form. Numerical methods
of solving the equations that were implemented in the
Mathematica system allow the calculation of the roots
of the algebraic equation with very small values of
coefficients.

Figures 1–10 present the results of calculations of
the evolution of boundaries between the regions with an
equal number of real roots on the  plane for the
values ν = 0.01 (in the neighborhood of the axisymmet�
ric case for ν = 0), ν = 0.2, ν = 0.5, and ν = 0.8.

The analysis of the numerical results for the speci�
fied parameters ν = 0.01 indicates that, as parameter h3
increases, the size of the regions with a constant number
of real roots decreases. The points in the parametric
space beginning at which the regions with a particular
number of real roots disappear will be called bifurcation
points. The results of calculations of bifurcation values
of parameters are presented in the table.

The calculations in Figs. 1–10 were performed for
the bifurcation values of parameter h3, indicated in the
table, and for h3 values corresponding to the mean value
of the distance between two adjacent bifurcation points.

It follows from the table that the bifurcation values
of parameter h3 at which the regions of existence of
24 equilibrium solutions (12 real roots) disappear sat�
isfy the relation 

The bifurcation values of parameter h3 at which the
regions of existence of 20 equilibrium solutions
(10 real roots) disappear are equal to 1 with increasing
ν up to the value  after which they decrease in
accordance with the relation 

For the regions where there exist 16 equilibrium
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 with increasing ν up to the value 
after which they remain at 1.

The regions with a number of equilibrium positions
equal to 12 decrease with increasing the value of param�
eter h3. The central part of these regions disappears at

 For the values  there exist small regions
whose number of equilibrium positions is also 12; these
regions are located near the  axis with characteristic
dimensions along the  and  axes not exceeding
the value of 10–1. As the value of h3 increases, these
regions decrease and shift to the right along the positive

3 3(1 )h = − ν 0.6,ν =

3 3.h = 3 3h ≥

2Oh

1Oh 2Oh

part of axis  and to the left along the negative part of
axis 

Consider the example in the neighborhood of the
axisymmetric case ν = 0) for the value ν = 0.01. In this
case, calculations were carried out for the value of
parameter h3 = 0.01 (in the neighborhood of zero
value). The curves in this case are very similar to cor�
responding curves for the axisymmetric case for the
axisymmetric case ν = 0, which are determined by
equations (18). As shown in paper [5], in the case of
axisymmetric satellite the number of equilibrium posi�
tions may only be 16, 12, and 8, and, accordingly,

2Oh

2.Oh

1

0 21–1–2

–1

12

8

16
h2

h1

16

16

16

16

Fig. 4. Regions of existence of equilibrium orientations (ν = 0.2, h3 = 1.0).

1

0 1–1

–1

12
8

h2

h1

12
12

Fig. 5. Regions of existence of equilibrium orientations
(ν = 0.2, h3 = 2.4).

Bifurcation values of ν, h3

ν h3 (24/20) h3 (20/16) h3 (16/12) h3(12/8)

0.01 0.99 1.0 2.97 3.0

0.1 0.90 1.0 2.7 3.0

0.2 0.80 1.0 2.4 3.0

0.3 0.70 1.0 2.1 3.0

0.4 0.60 1.0 1.8 3.0

0.5 0.50 1.0 1.5 3.0

0.6 0.40 1.0 1.2 3.0

0.7 0.30 0.9 1.0 3.0

0.8 0.20 0.6 1.0 3.0

0.9 0.10 0.3 1.0 3.0

0.99 0.01 0.03 1.0 3.0
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there exist only 3 regions in the parametric space with
an equal number of equilibrium positions. In this case
we have only two bifurcation values of parameter h3:
h3 = 1 and h3 = 3.

For values of the inertial parameter ν = 0.99, which
is close to the axisymmetric case ν = 1, the boundaries
of regions were calculated for the values h3 = 0.01 (the
bifurcation point where the region with 24 equilibrium
positions disappears). The boundary curves for the val�
ues of inertial parameter tending to 1, approach the
corresponding analytical curves for the axisymmetric
case ν = 1 which are determined by equations (19). In
this case we have also two bifurcation values for
parameter h3: h3 = 1 and h3 = 3.

Within the interval of inertial parameter values
 the evolution of regions with a constant

number of equilibrium positions of 24, 20, 16, 12, and
8 has been investigated numerically (Figs. 1–10). Let
us consider in more detail the character of the change
of the regions with the number of equilibrium posi�
tions equal to 24, 20, 16, 12, and 8, for the example,
when  (Figs. 1–5).

The analysis of the numerical results shows that for
, regions with a number of equilibrium posi�

tions equal to 24, 20, 16, 12, and 8 exist in the 
plane for  (Figs. 1, 2). It is seen from Fig. 2
that, as the value of h3 increases, the size of regions
with a number of equilibrium positions of 24, 20, 16,
and 12 becomes smaller, than corresponding regions
in Fig. 1. For the bifurcation value h3 = 0.8, the region
with the number of equilibrium positions equal to
24 disappears (Fig. 3), and within the interval of values

 there exist only four types of regions
with the number of equilibrium positions equal to 20,
16, 12, and 8. For the bifurcation value  the
region with a number of equilibrium positions of
20 disappears (Fig. 4). Within the interval of values

 there exist only three types of regions

0.1 0.9≤ ν ≤

0.2ν =

0.2ν =

1 2( , )h h

3 0.8h <

30.8 1.0h< <

3 1.0h =

31.0 2.4h≤ <

with a number of equilibrium positions equal to 16, 12,
and 8 (Fig. 4).

For the bifurcation value , the region with
the number of equilibrium positions equal to 16 disap�
pears (Fig. 5). Within the interval , there
remain only two types of regions with a number of
equilibrium positions equal to 12 and 8. For 
regions with the number of equilibrium positions
equal to 12 disappear in the neighborhood of the coor�
dinate origin, and, with further increases of parameter
h3 values near the Oh2 axis, there appear small regions
with the number of equilibrium positions equal to 12.

Figures 6–10 present the evolution of regions with
the constant number of equilibrium positions for the
values of inertial parameters  and 

When the values of the aerodynamic torque
parameter  are greater than 3, for any values of
parameters h1 and h2 there exist 8 equilibrium posi�

3 2.4h =

32.4 3h≤ <

3 3.0h =

0.5ν = 0.8.ν =

3h

2

0 1–1
–3
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12

8

20 h2

h1

16

2 3
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1

Fig. 6. Regions of existence of equilibrium orientations (ν = 0.5, h3 = 0.01).
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Fig. 7. Regions of existence of equilibrium orientations
(ν = 0.5, h3 = 1.0).
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tions of the satellite, which correspond to 4 real roots
of equation (17).

CONCLUSIONS

In the present work, we have studied the rotational
motion of the satellite with respect to its center of mass
in a circular orbit subject to gravitational and aerody�
namic torques. Main attention was given to determina�
tion of the equilibrium positions of the satellite in the

orbital coordinate system. A symbolic–numerical
method of determining all equilibrium positions of the
satellite in the orbital coordinate system was proposed
for the specified values of the aerodynamic torque vec�
tor and principal central moments of inertia in the gen�
eral case, when  and   

A detailed numerical analysis of the evolution of
regions of existence of various numbers of equilibrium
positions in the plane of two parameters  was per�

A B C≠ ≠ 1 0,h ≠ 2 0,h ≠ 3 0.h ≠

1 2( , )h h
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1
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–1

16

21
–2 –1

24
20 16

–1.5

–0.5

1.5

0.5

Fig. 8. Regions of existence of equilibrium orientations (ν = 0.8, h3 = 0.01).
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Fig. 9. Regions of existence of equilibrium orientations (ν = 0.8, h3 = 0.2).
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formed for various values of parameters ν and h3. It was
shown that the number of the satellite’s equilibrium
positions in a circular orbit does not exceed 24 and can�
not be less than 8, in the general case. The obtained
results can be used at the stage of preliminary design of
the aerodynamic attitude control system of the satellite.
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