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ABSTRACT 

This paper introduces a novel method of modeling acoustic and elastic wave propagation in 

inhomogeneous media with sharp variations of physical properties based on the recently 

developed grid-characteristic method which considers different types of waves generated in 

inhomogeneous linear elastic media (e.g., longitudinal, transverse, Stoneley, Rayleigh, 

scattered PP-, SS-waves, and converted PS- and SP-waves). In the framework of this method, 

the problem of solving acoustic or elastic wave equations is reduced to the interpolation of the 

solutions, determined at earlier time, thus avoiding a direct solution of the large systems of 

linear equations required by the FD or FE methods. We apply the grid-characteristic method 

to compare wave phenomena computed using the acoustic and elastic wave equations in 

geological medium containing a hydrocarbon reservoir or a fracture zone. The results of this 

study demonstrate that the developed algorithm can be used as an effective technique for 

modeling wave phenomena in the models containing hydrocarbon reservoir and/or the 

fracture zones, which are important targets of seismic exploration. 
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INTRODUCTION  

Numerical modeling of seismic wave propagation is often based on acoustic wave 

approximation (Aki and Richards 2002; Bording and Lines 1997; Chapman 2004). The three 

most common types of modeling methods in use in geophysics are direct methods, integral-

equation methods, and asymptotic methods (Carcione, Herman and Kroode 2002). Over the 

last decade significant progress has been made in all these methods (Wang and Liu 2007; 

Etgen and O’Brien 2007; Hestholm 2009; Tong, Yang and Hua 2011; Di Bartolo, Dors and 

Mansur 2012; Hobro, Chapman and Robertsson 2014; Sanyi et al. 2014).  

However, the actual wave propagation processes in geological media can be more 

accurately represented by elastic wave equations. The solution of this problem has been 

discussed in numerous publications. For example, in the papers by Levander (1988), Seriani 

et al. (1992), and Van Vossen, Robertsson and Chapman (2002), the authors presented 

solutions based on the finite element method, while Jianfeng (1997), Zhang, Zhang and Chen 

(2012), and many others used a finite-difference method. Käser and Igel (2001) simulated 2D 

wave propagation on unstructured grids using explicit differential operators, and Käser and 

Dumbser (2006a,b; 2008) applied a discontinuous Galerkin method. Zeng and Liu (2004) 

suggested a multidomain pseudospectral time domain method based on the spectral derivative 

operator approximated by Chebyshev or Lagrange polynomials. Peter et al. (2011) used a 

spectral-element method on unstructured hexahedral meshes for numerical simulation in both 

elastic and acoustic media. A comprehensive review of the modern methods of modeling 

seismic wave propagation can be found in Virieux et al. (2012). A hybrid acoustic-elastic 

modeling method based on adaptive grid finite-difference scheme was suggested by Jiang and 

Jin (2013). Di Bartolo et al. (2015) discussed a memory optimized acoustic-elastic finite-

difference coupling approach, while Matuszyk and Demkowicz (2014) solved a coupled 
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poroelastic, acoustic and elastic wave propagation problems using automatic hp-adaptivity 

method. 

The validity of the acoustic approximation for elastic waves in heterogeneous media 

was investigated recently by Solano, Stopin and Plessix (2013) and Cance and Capdeville 

(2015). 

A novel approach to modeling wave phenomena based on the grid-characteristic method 

(GCM, Magomedov and Kholodov, 1988) was developed in Petrov et al. (2013), Golubev, 

Petrov and Khokhlov (2013a, b), Muratov and Petrov (2013), Kvasov and Petrov (2012), and 

Favorskaya et al. (2014).  The GCM approach is based on a linear transformation of the 

original hyperbolic system of equations, describing the wave phenomena in acoustic or elastic 

media, into a system of transport equations, for which the solution at later time can be 

determined as a linear combination of the displaced at the certain spatial-step solutions at 

some previous time moment. Therefore, the problem of solving acoustic or elastic wave 

equations is reduced to the interpolation of the solutions, determined at earlier time, thus 

avoiding a direct solution of the large system of linear equations, usually required in the 

framework of the conventional finite-difference modeling. The interpolation problem can be 

solved using an arbitrary grid (e.g., regular, irregular, triangular, tetrahedral, curvilinear, etc.), 

which allows us to correctly represent a complex medium by using a fine grid near 

inhomogeneities and a course grid away from the sources and/or inhomogeneities. We should 

note that, the method can be used to model the wave propagation in lossy media as well; 

however, in this paper we will consider the nondispersive media only. The comparison 

between GCM approach and the other forward modeling techniques was discussed in 

Biryukov et al. 2016.  

In this paper, we demonstrate that, by using the GCM approach and the correct 

boundary conditions on the interfaces and boundaries of the modeling domain, one can model 

the wave phenomena in the acoustic and elastic media, by producing the results, which 
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represent all complexity of the waves propagation with different types of the waves present 

(e.g., longitudinal, transverse, Stoneley, Rayleigh, scattered PP-, SS-waves, and converted PS- 

and SP-waves).  

This paper uses the advantages of the GCM approach to compare the wave patterns and 

the seismograms obtained using the numerical modeling of the wave propagation based on 

acoustic and elastic wave equations, respectively. Thus, we demonstrate significant 

differences in seismic responses produced by the two different modeling approaches. These 

differences indicate that the conventional inversion algorithms based on an acoustic model of 

the seismic wave propagation may provide erroneous results in interpretation of the seismic 

data.  

Note that, one of the major problems related to modeling the wave phenomenon is an 

accurate calculation of the elastic and/or acoustic waves in a medium with sharp physical 

contrasts, e.g., oil-water interface and/or fracture zones. In the current paper, we demonstrate 

how the GCM approach can be used for solving this problem. As an example, we present the 

results of modeling the acoustic wave propagation in the medium with a hydrocarbon (HC) 

reservoir and with several fractures characterized by sharp variations of elastic properties. The 

last problem is important in applications in shale-gas industry related to hydraulic fracture 

monitoring. 

We begin this paper with a summary of the basic principles of the GCM technique and 

present the recent developments in application of this method for solving both the elastic and 

acoustic wave equations.  

ELASTIC AND ACOUSTIC WAVE EQUATIONS 

The basic equations of motion of the linear-elastic medium can be written as follows 

(Aki and Richards 2002; LeVeque 2002; Zhdanov 2002, 2015): 

     (   )
 , (1) 
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    (   )   (    (   ) ), (2) 

where   is density,   is velocity,   is the stress tensor, and  ,   are the Lamé parameters, 

characterizing the elastic properties of the medium. 

We use the following mathematical notations throughout this paper: 

   
  

  
  is the partial derivative of field   with respect to time   ; 

    is a tensor product of two vectors,   and  , (   )       ; 

  is identity tensor of rank 2. 

The system of equations describing the acoustic wave propagation can be written as 

follows (Landau and Lifshitz 1959; Aki and Richards 2002; LeVeque 2002; Zhdanov 2002, 

2015): 

         , (3) 

      
  (   ), (4) 

where   is an acoustic pressure field in the medium,   is the velocity of the acoustic wave 

propagation, and   is the speed of the sound in the acoustic medium. Note that, equations (3) 

and (4) hold for acoustic wave propagation within incompressible fluid as well. 

THE GRID-CHARACTERISTIC METHOD FOR NUMERICAL MODELING ELASTIC 

WAVES IN INHOMOGENEOUS MEDIUM 

The grid-characteristic method (GCM) uses the characteristic properties of the systems 

of hyperbolic equations, describing the elastic wave propagation (Petrov et al. 2013; Golubev 

et al. 2013). The mathematical principles of the GCM approach are summarized in Appendix 

A. It is based on representing the equations of motion of the linear-elastic medium in the 

following form: 

                    . (5) 

In the last equation,   is a vector of unknown fields, having   components and equal to  
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   [
 
 
]  [                        ]

 . (6) 

where  (       ) is a vector of the unknown fields;    denotes the partial derivative of    

with respect to  ;    ,    and    denote the partial derivatives of vector   with respect to   , 

 , and  , respectively. 

Matrices   ,          are the      matrices given by the following expression: 
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matrix    is given by the following expression: 
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, (8) 

and matrix    can be written as follows: 
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The product of matrix    and vector   can be calculated as follows: 

   [
 
 
]   [

   (   )

 (   )   (       )
], (10) 
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where   denotes the tensor product of two vectors.  

In the last equation   is a unit vector directed along the  ,  , or   directions for matrices   , 

  , or   , respectively. 

As we discussed above, the GCM approach is based on representing the solutions of the 

acoustic and/or elastic wave equations at later time as a linear combination of the displaced at 

a certain spatial step solutions at some previous time moment. This representation can be used 

to construct a direct time-stepping iterative algorithm of computing the wave fields at any 

time moment from the initial and boundary conditions. In order to develop this time-stepping 

formula, we represent matrices    using their spectral decomposition. For example, for 

matrix    we have: 

    (  )
      , (11) 

where    is a     diagonal matrix, formed by the eigenvalues of matrix   ; and (  )
   is a 

    matrix formed by the corresponding eigenvectors. Note that, matrices   ,    and    

have the same set of eigenvalues:  

 {                          }. (12) 

In the last formula,    is a P-wave velocity being equal to (   (    ))
  ⁄

 and    is 

an S-wave velocity being equal to (    )  ⁄ . 

Let us consider some direction  . We assume that the unit vector   is directed along this 

direction, while the unit vectors    and    form a Cartesian basis together with  . We also 

introduce the following symmetric tensors of rank 2:  

     
 

 
(           ), (13) 

where indices   and   vary from 0 to 2 in order to simplify the final formulas, and     . 

It is shown in Appendix A that, the solution of equation (5), vector  , along the x, y, and 

z directions can be written as follows: 
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  (         )  ∑      (             )
 
   ,  

  (         )  ∑      (             )
 
   , (14) 

  (         )  ∑      (             )
 
   .  

Here   is the time step of the solution, and     ,      and      are the characteristic matrices 

expressed through the components of matrices   ,    and    and their eigenvalues as 

follows: 

               , i=1,2,3; (15) 

 where         is the  ’s column of  matrix (  )
  , and      is the  ’s row of  matrix   . The 

scalar components of the column matrices       are defined by the following expressions: 

      (  [
 
 
])
   
     (   )

  
(     ), (16) 

           (   )
  (     ), (17) 

           (   )
  (     ), (18) 

         , (19) 

    (       )   , (20) 

    (        
  

    
   )   . (21) 

In equations (16) - (21) the asterisk “*”denotes the convolution of two tensors of rank 2. 

Expressions (14) can be used to find the solution, vector  , at any time moment,    , from 

the given initial conditions, thus representing a direct time-stepping algorithm of numerical 

modeling the elastic wave propagation in inhomogeneous media.  

In order to accurately take into account the conditions on the boundary of the modeling 

domain and on the interfaces inside the modeling domain between the elastic bodies with 

different properties, we use the corresponding boundary and interface conditions, discussed in 

Appendix B.  
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We should note in conclusion of this section that, because the GCM is based on the 

solution of the fundamental equations of motion of the linear-elastic medium, (1) and (2), it 

takes into account all varieties of the waves generated in inhomogeneous medium (e.g., 

longitudinal, transverse, Stoneley, Rayleigh, scattered PP-, SS-waves, and converted PS- and 

SP-waves). 

THE GRID-CHARACTERISTIC METHOD FOR NUMERICAL WAVE MODELING IN 

ACOUSTIC MEDIUM 

We use the grid-characteristic method (GCM) for numerical wave modeling in an 

acoustic medium as well. In the case of acoustic waves, vector   of unknown fields has four 

components, and it is equal to the following expression: 

   [
 
 ]  [

       ] . (22) 

In acoustic case, matrices   ,          become  [4  ] matrices given by the 

following formulas: 

     

[
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, (23) 
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, (24) 
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. (25) 

The product of matrix    and vector   can be calculated as follows: 
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   [
 
 ]  [

     

   (   )
]. (26) 

In the last equation,   is a unit vector directed along the  ,  , or   directions for 

matrices   ,   , or   , respectively. Note that matrices   ,    and    have the same set of 

the eigenvalues:  

 {        }. (27) 

The scalar components,   , of vector  (       ) from equation (A8), which is the 

product of matrix    and vector    can be written as follows: 

      (  [
 
 ])

   
     (   )

  
 , (28) 

        , (29) 

        . (30) 

 

Substituting expressions (28) – (30) for scalar components     in equations (14), we arrive at 

the direct time-stepping algorithm of numerical modeling the elastic wave propagation in 

inhomogeneous media. 

We also use the corresponding boundary and interface conditions for acoustic waves, 

discussed in Appendix B. 

NUMERICAL COMPARISON OF THE GRID-CHARACTERISTIC METHOD WITH THE 

EXACT METHOD 

We have conducted a standard test for validating the grid-characteristic method using 

a classical  Lamb problem (Lamb 1904). In this problem, a wavefield is modeled for a point 

source of a vertical force located under a free boundary (see at Figure 1).. A two-dimensional 

solution of this problem can be calculated analytically (Berg et al. 1994). The parameters of 

the model were selected close to those of Dumbser, K¨aser and De La Puente (2000). 
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Figure 1. A sketch of a Lamb test model. 

The problem was considered in an isotropic elastic medium with a P-wave velocity 

equal to 3200 m/s, the S-wave velocity of 1847.5 m/s, the density of the medium was assumed 

to be equal to 2200 kg/m
3
. The positions of the source and receiver are shown in Figure 1 ((0 

m, 100 m), and (300 m, 400 m), respectively). The waveform of the pulse in the source was 

given by a Riker impulse with a frequency of 14.5 Hz. We used a two-dimensional regular 

grid with a coordinate step of 4 m, and with the total number of  nodes equal to 700 x 500. 

The integration time step was equal to 5 ms, with the total time of 1 s, thus requiring 2,000 

time steps. The numerical integration was done using a computational scheme of the third 

order of accuracy. Figure 2 presents the seismograms obtained numerically using the GCM 

and analytically. One can see from this Figure that, there is a good match between the 

solutions and the difference between the analytical and the numerical solutions is also very 

small. 
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Figure 2. Seismograms obtained numerically using the grid-characterisitic method and analytically for 

the Lamb test model. Panel (a) – horizontal component of the velocity. Panel (b) – vertical component 

of the velocity. 

The next test is the validation of the realization of the contact condition between the 

two elastic media with different seismic parameters. In this test, two elastic half spaces and a 

compressional point source were considered. The solution of this problem can be calculated 

analytically as well (Berg et al. 1994). We considered two half spaces with the interface 

passing along coordinate z = 0 (Figure 3). The source and the receiver are located in the lower 

half space, in the points with coordinates of (0 m, 100 m) and (300 m, 400 m), respectively. 

The medium in the upper half space is characterized by P-wave velocity equal to 2500 m/s,  

S-wave velocity 1558 m/s, and the density of the medium was 1500 kg/m
3
. The medium in 

the lower half space is assumed having P-wave velocity equal to 3400 m/s, S-wave velocity of 

.484 m/s, and the density of  2600 kg/m
3
. The waveform of the pulse in the source was given 

by a Riker impulse with a frequency of 14.5 Hz. We used a two-dimensional regular grid with 

a coordinate step of 2 m, and a grid size of 1000 x 1500 nodes. Figure 4 shows the 

corresponding seismograms obtained numerically using the GCM and analytically. The 

results of this numerical study demonstrate that, the difference between the analytical and the 

numerical solutions is negligibly small. 

Thus, the results of our numerical study demonstrate that the GCM is an accurate 

numerical technique for simulating the elastic wavefields. Our test models were relatively 
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simple in order to compare the GCM with the analytical solutions. The examples of 

comparison between GCM and other numerical methods for more complicated models can be 

found in Biryukov et al. (2016). 

  

 

Figure 3. A sketch of two half spaces model. 

 

Figure 4. The original seismograms obtained numerically and analytically. for 

two half spaces model. Panel (a) – horizontal component of the velocity.  

Panel (b) – vertical component of the velocity. 
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A NUMERICAL COMPARISON OF THE WAVE PHENOMENA IN ACOUSTIC AND 

ELASTIC MEDIA 

We illustrate the developed numerical method of modeling elastic and acoustic waves 

by a comparison study of the wave phenomena in acoustic and elastic media.  

Let us consider the horizontally-layered model shown in Figure 5. The parameters of 

each layer are summarized in Table 1. We also assume that layer #7 has a limited horizontal 

extension to model a hydrocarbon (HC) reservoir with the relatively low velocities of the 

seismic wave propagation. For simplicity, we consider a 2D model with all parameters 

varying in the vertical and one horizontal direction only.  The modeling domain extends to 

12,000 m and 4,001 m in the horizontal and vertical directions, respectively.  

Table 1:  Parameters of the multilayed medium shown in Fig. 1 

The number 

of the layers 

Density, 

kg/m
3
 

P-wave velocity,  

m/s 

S-wave velocity,  

m/s 

Thickness,  

m 

1 2100 2600 1100 60 

2 2300 3200 1960 70 

3 2300 3700 2260 150 

4 2400 4000 2450 340 

5 2500 4300 2630 360 

6 2600 4500 2750 270 

7 2300 3200 1700 60 

8 2600 4600 2820 80 

9 2700 4800 2940 70 
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10 2800 5400 3300 2601 

 

We use the nonreflecting boundary conditions on the sides and on the bottom of the 

modeling domain and the free-surface conditions on the earth’s surface (Virieux et al. 2012; 

Petrov et al. 2013). The source is modeled by using as a boundary condition at seven central 

points on the earth’s surface a Ricker wavelet with the frequency,  , equal to 31 Hz. We also 

use zero initial conditions for the wave fields. 

 

Figure 5. A sketch of a horizontally-layered model, containing a hydrocarbon (HC) reservoir  

(layer #7) with relatively low velocities of seismic wave propagation. 

The sensors (geophones) are located every 24 m along a horizontal profile extended to 

4,500 м in both directions from the source.  The original systems of the elastic and acoustic 

wave equations were discretized using a rectangular grid with a cell size of 3 m by 2m in the 

horizontal and vertical directions, respectively, and the time step was equal to 0.00037 s, with 

a total time of 1.85 s requiring  5,000 time steps. Note that, the cell size in the bottom layer 

(#10) was 3 m by 3 m. The computations for the model with the HC reservoir took 

approximately 10 hours on one computer node (without parallelization). We computer 

simulated the wave propagation in four different models, described below. Model 1 represents 

a horizontally layered elastic medium shown in Figure 1 with the parameters listed in Table 1. 
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Model 2 is the same as Model 1 with one important difference − this model does not contain 

inclusion #7 representing an HC reservoir. Model 3 represents the horizontally layered 

acoustic medium shown in Figure 1 with the velocities of the acoustic wave propagation equal 

to the corresponding velocities of the P-wave shown in Table 1. Model 4 is the same as Model 

1 but without inclusion #7 representing the HC reservoir. 

Figures 6 and 7 present snapshots of the wave propagations at 0.4514 s and 0.6438 s 

respectively, with the gray scale representing the amplitude of the wave velocity. Panels (a) in 

Figures 6 and 7 represent snapshots of the wave propagation in the acoustic medium (Models 

3 and 4), while panels (b) show snapshots of the P-wave propagation in the elastic medium 

(Models 1 and 2). Each panel represents the modeling results for two scenarios -- without (the 

left side of the panel) and with (the right side of the panel) the HC reservoir (layer #7).  

We plot in Figures 8 and 9 the seismograms corresponding to the vertical and horizontal 

components of the wave velocity, respectively. Panels (a) in Figures 8 and 9 represent 

seismograms computer simulated for the acoustic medium (Models 3 and 4), while panels (b) 

plot the corresponding seismograms for the elastic medium (Models 1 and 2). On the left side 

of each panel we plot the seismograms for the models without the HC reservoir (without layer 

#7), while on the right side we show the seismograms for the models with the HC reservoir 

(layer #7).  
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Figure 6. Snapshots of the wave propagations at 0.4514 s with the gray scale representing the 

amplitude of the wave velocity. Panel (a) represents the wave propagation in the acoustic medium 

(Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium (Models 1 and 2). 

The left side of each panel corresponds to the models without the HC reservoir, while the right side 

corresponds to the models with the HC reservoir. 
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Figure 7. Snapshots of the wave propagations at 0.6438 s with the gray scale representing the 

amplitude of the wave velocity. Panel (a) represents the wave propagation in the acoustic medium 

(Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium (Models 1 and 2). 

The left side of each panel corresponds to the models without the HC reservoir, while the right side 

corresponds to the models with the HC reservoir. 
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Figure 8. Seismograms corresponding to the vertical component of the wave velocity. Panel (a) 

represents seismograms computer simulated for the acoustic medium (Models 3 and 4), while panel 

(b) shows the corresponding seismograms for the elastic medium (Models 1 and 2). The left side of 

each panel corresponds to the models without the HC reservoir, while the right side corresponds to the 

models with the HC reservoir. The distance is plotted horizontally. The time is plotted vertically. 
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Figure 9. Seismograms corresponding to the horizontal component of the wave velocity. Panel (a) 

represents seismograms computer simulated for the acoustic medium (Models 3 and 4), while panel 

(b) shows the corresponding seismograms for the elastic medium (Models 1 and 2). The left side of 

each panel corresponds to the models without the HC reservoir, while the right side corresponds to the 

models with the HC reservoir. The distance is plotted horizontally. The time is plotted vertically. 

 

We use the following notations in Figures 6 and 7. Symbol “Ra” marks the Rayleigh 

waves, symbols “P” and “S” correspond to the P- and S-waves generated by the source. 

Symbol “PP1” denotes the P-waves, reflected from the top of the HC reservoir, while “PP2” 

marks the P-waves, reflected from the bottom of the HC reservoir. Symbol “PS1” represents 

the converted PS-waves reflected from the top of the HC reservoir, while PS2 marks the 

converted PS-waves reflected from the bottom of the HC reservoir. Symbol “SP1” denotes the 

converted SP-waves from the top of the reservoir, while “SP2” marks the converted SP-waves 

from the bottom of the reservoir. Finally, symbols “SS1”and “SS2” denote the converted SS-

waves from the top and bottom of the reservoir, respectively. 

One can see significant differences in the responses from the hydrocarbon reservoir 

modeled using the acoustic and wave equations, respectively. Clearly, the wave propagation 
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in the elastic medium generates an image with much richer wave distribution picture  than that 

produced by the acoustic waves.  These figures also illustrate a difference in geometrical 

pattern and topology of seismic waves for different cases. The converted waves, which are 

obviously absent in the acoustic model, play the most important role in emphasizing the 

response from the HC reservoir located in the elastic medium. The Rayleigh waves are also 

observed in the elastic medium only.   

SHARP VARYING SPACE STEPS AND FRACTURE  MODELING 

The grid-characteristic method GCM approach represents a powerful technique for 

accurate modeling of the wave phenomena in the presence of sharp physical contrasts, e.g., 

fracture zones. This is possible because the direct time-stepping algorithm (14) of the GCM 

can be used for an arbitrary nonumiform grid with a fine discretization near inhomogeneities 

and a course grid size away from the sources and/or inhomogeneities (e.g., Figure 10). This 

technique allows us to avoid incorrect oscillations of the solutions which might occur in the 

case of the use of an uniform grid for the models with sharply varying  physical properties.  

 

Figure 10. Example of nonuniform  grid (a) with different cell sizes in different areas, and nonuniform 

nodes (b).  

 

The GCM approach could be of particular importance in modeling the wave 

propagation in the medium containing fractures, e.g., for hydraulic fracture monitoring 

(HFM). Let us consider a numerical modeling of elastic waves propagating in the 
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horizontally-layered background  model shown in Figure 11 containing  sixteen fractures. The 

parameters of the horizontally layered background model are summarized in Table 2. We also 

assume that layer #6  contains sixteen fractures with different parameters. The lengths of these  

fractures are equal to 25 m, 50 m, 25 m, 75 m, 25 m, 50 m, 25 m, 75 m, 25 m, 100 m, 25 m, 

75 m, 25 m, 50 m, 25 m, and 25 m, respectively. The width of these fractures is equal to 5 m. 

For simplicity, we consider a 2D model with all parameters varying in the vertical and one 

horizontal direction only. The modeling domain extends to 8 400 m and 5 550 m in the 

horizontal and vertical directions, respectively. For a comparison, we also consider the 

background model without any fractures. We have applied the GCM based algorithm for 

computing both the elastic and acoustic waves in this model.  

Table 2:  Parameters of the horizontally laryed background model shown in Fig. 7 

The number 

of the layer 

Density, 

kg/m
3
 

P-wave velocity, 

 m/s 

S-wave velocity,  

m/s 

Thickness, 

 m 

1 2000 2170 674 500 

2 2300 2130 795 100 

3 2200 2500 1090 300 

4 2300 2680 1220 100 

5 2400 3000 1385 400 

6 (with 

fractures) 

2700 5550 3144 100 

7 2800 6000 1250 150 

8 2850 6000 1550 4000 

Within 1350 2775 1572 − 
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fractures 

 

The source and the boundary conditions are the same as in the first experiment. We also 

use zero initial conditions for the wave fields. 

 

Figure 11. A sketch of a horizontally-layered background model, containing sixteen fractures. 

  

We used a rectangular grid with variable cell size from 5 m to 0.25 m in horizontal and 

1 m in vertical directions, respectively, as shown in Figure 12. The time step was equal to 

0.00004 s, with a total time of 3 s and with 75,001 time steps. The computations for the model 

with the fracture zone took approximately 50 hours on one computer node (without 

parallelization). However, the algorithm of the GCM method is very well suited for 

parallelization which will speed up all computations significantly. This will be a subject of 

future research. 
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Figure 12. A fragment of the discretization grid used for modeling the wave propagation in the 

medium with a fracture zone. 

Figure 13 presents the snapshots of the wave propagation in the model with the fracture 

zone (the right  side of the figure) and without the fractures (the left side of the figure).  

Figure 14 presents right parts of the seismograms computed for a model with fractures. 

Figure 15 shows right parts of the seismograms representing the difference between seismic 

signals obtained in the case of fractures and in the case without fracture. Panel (a) represents 

seismograms computer simulated for the acoustic medium, while panel (b) shows the 

corresponding seismograms for the elastic medium. The left panels correspond to the 

horizontal component of the wave velocity, while the right panels correspond to the vertical 

component of the wave velocity. Note that, the seismogram in the case of acoustic media and 

horizontal component of velocity is total zero due to the absence of S-waves. 
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Figure 13. Snapshots of the wave propagations at 0.8 s with the gray scale representing the amplitude 

of the wave velocity.. Panel (a) represents the wave propagation in the acoustic medium, while panel 

(b) shows the wave propagation in the elastic medium. The left side of each panel corresponds to the 

models without any fracture, while the right side corresponds to the models with the fractures. 
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Figure 14. Seismograms representing the seismic signals for a model with fractures. Panel (a) 

represents seismograms for the acoustic medium, while panel (b) shows the corresponding 

seismograms for the elastic medium. The left panels correspond to the horizontal component of the 

wave velocity, while the right panels corresponds to the vertical component of the wave velocity. The 

distance is plotted horizontally. The time is plotted vertically. 
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Figure 15. Seismograms representing the difference between seismic signals obtaining in the case of 

fractures and in the case without any fracture. Panel (a) represents right parts of seismograms 

computer simulated for the acoustic medium, while panel (b) shows the corresponding right parts of 

seismograms for the elastic medium. The left side of each panel corresponds to the horizontal 

component of the wave velocity, while the right side corresponds to the vertical component of the 

wave velocity. The distance is plotted horizontally. The time is plotted vertically. 

CONCLUSIONS 

We have presented a novel approach to modeling the wave phenomena in acoustic and 

elastic media with sharp variations of physical properties using the grid-characteristic method 

(GCM) and nonregular grids with varying cell sizes near inhomogeneities. This method 

provides a direct solution of the corresponding systems of acoustic and elastic wave equations 

in a form of direct time-stepping recursive computations. The advantage of the developed 

method over the traditional techniques based on the finite difference approximation is that it 

reduces the problem of solving acoustic or elastic wave equations to the interpolation of the 

solutions, determined at earlier time, thus avoiding a direct solution of the large system of 

linear equations, usually required in the framework of the conventional finite-difference 
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modeling. The GCM approach takes into account all varieties of the waves generated in 

inhomogeneous medium (e.g., longitudinal, transverse, Stoneley, Rayleigh, scattered PP-, SS-

waves, and converted PS- and SP-waves). Using this novel approach, we have conducted a 

comparison study of the acoustic and elastic wave propagation in the horizontally layered 

model containing an HC reservoir and a fracture zone. The results of our modeling study have 

demonstrated that the inclusion of the relatively low velocity layer representing an HC 

reservoir in the horizontally layered model generates a significantly stronger distortion of the 

elastic wave distribution than that of the acoustic waves. The same effect occurs in the case of  

fractures. A distortion of the elastic waves, associated with the HC reservoir or a fracture 

zone, is manifested by the broad combination of the reflected and converted waves, e.g., PP-, 

SS-, PS-, and SP- waves. This complexity of the wave phenomena in the elastic medium is 

transformed into distinct anomalies, associated with the HC reservoir and fractured zone 

observed in the corresponding seismograms, especially in the case of the vertical velocity.  

Future research will be aimed at developing full-wave inversion algorithms based on 

accurate modeling of the elastic wave propagation using the GCM. 
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APPENDIX A: PRINCIPLES OF THE GRID-CHARACTERISTIC METHOD 

The foundations of the grid-characteristic method for solving the transport equation 

were introduced in Magomedov and Kholodov (1988). Here we present a short overview of 

the mathematical principles of this method for solving the hyperbolic systems of equations 

with constant coefficients, following (Petrov et al. 2013).  

The main idea of the grid-characteristic method is to use the characteristic properties of 

the corresponding hyperbolic system of equations, which allow us to transform the original 

hyperbolic system of equations, describing the wave phenomena in acoustic or elastic media, 

into a system of transport equations. It is well known that the solution of the transport 

equations at later time can be determined as a linear combination of the displacements at a 

certain spatial step solutions at some previous time moment, which makes it possible to 

construct a direct time-stepping iterative algorithm of computing the wave fields at any time 

moment from the initial and boundary conditions. The stability conditions for rectangular 

discretization grids used in this paper are of the Courant-Fridrich-Levy type for both systems 

of equations describing elastic and acoustic waves (Favorskaya and Petrov, 2016).  

Let us consider the key mathematical principles of the GCM technique as applied to the 

wave phenomenon. Systems of equations (1), (2) and (3), (4) are special cases of the 

hyperbolic systems of equations with constant coefficients. Let us consider an arbitrary 

hyperbolic system of equations with constant coefficients: 

   (       )      (       )      (       )      (       )   , (A1) 

where  (       ) is a vector of the unknown fields, having   components;    denotes the 

partial derivative of    with respect to  ;    ,    and    denote the partial derivatives of 

vector   with respect to   ,  , and  , respectively; and    ,   , and    are the given     

matrices.  
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In order to apply the grid-characteristic method, we represent matrices    using their 

spectral decomposition. For example, for matrix    we have: 

    (  )
      , (A2) 

where    is a     diagonal matrix, formed by the eigenvalues      of matrix   ; and (  )
   

is     matrix formed by the corresponding eigenvectors.  

Let us consider      matrices      determined by the following expression: 

               .  

In the last formula,        is the  ’s column of matrix (  )
  , and      is the  ’s row of  

matrix   . Due to characteristic properties of the system of hyperbolic equations (A1), the 

solution of this equation, vector  , at the x direction can be written as follows: 

  (         )  ∑      (             )
 
   , (A3) 

where   is the time step of the solution. 

Similar expressions can be written for the solution of equations (A1) at the y and z 

directions, respectively: 

  (         )  ∑      (             )
 
   , (A4) 

  (         )  ∑      (             )
 
   , (A5) 

Equations (A3) – (A5) can be used to find the solution, vector  , at any time moment, 

   , from the given initial conditions.  

Note that matrices      satisfy the following condition: 

 ∑     
 
     .  

Let us assume that matrix    has    positive,    negative, and    zero eigenvalues, 

respectively. Therefore, the sum of matrices,     , corresponding to zero  eigenvalues, can be 

expressed as follows: 

 ∑            ∑          ∑         . (A6) 
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Considering (A6), expression (A3) will take the following form: 

  (         )   (       )  ∑     ( (             )   (       ))       . (A7) 

In order to reduce the number of mathematical operations, the computations according 

to expression (A7) could be conducted in three stages.  

In the first stage vector  (       ) is multiplied by matrix    to find vector 

 (       ): 

  (       )     (       ). (A8) 

In the second stage, we determine vector  (         ) using the following recursive 

formula, which can be derived from equation (A7): 

  (         )   (       )  ∑ ( (             )   (       ))       , (A9) 

Where         . 

In the third stage, vector  (         ) is multiplied by matrix (  )
    to find the 

solution, vector  , of the system of hyperbolic equations (A1): 

  (         )  (  )
   (         ). (A10) 

Note that, determining vector  (       ) from equation (A9) is equivalent to solving 

the corresponding transport equation for         (Petrov et al., 2013): 

 (  )      (  ) 
  , (A11) 

where x, t subscripts denote the partial derivatives with respect to time x, t, respectively. 

In numerical computations, we consider the values of vectors   and   given on some 

discretization grid.  

APPENDIX B: BOUNDARY AND INTERFACE CONDITIONS 

In order to obtain a unique solution of the system of hyperbolic equations (A1), one 

should use the corresponding boundary conditions on the surface of the modeling domain, 

which, in general terms, can be written as follows: 
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   (            )   , (B1) 

where   and   are some given matrix and vector, respectively. 

For example, in a case of elastic media, two types of boundary conditions can be used. 

One is based on the given traction,  : 

      , (B2) 

where   is a unit vector of the outer normal  to the boundary of the modeling domain. 

Another boundary condition can be based on a given velocity    at the boundary: 

     . (B3) 

One can also use the first combined boundary condition for the elastic medium with the 

given normal projection of the velocity at the boundary,   , and a given tangential component 

of the traction,   : 

       . (B4) 

       , (B5) 

 (   )     . (B6) 

The second combined boundary condition for elastic medium is based on the given 

normal projection of the traction,   , and a given tangential component of the velocity at the 

boundary   : 

      , (B7) 

     , (B8) 

 (   )      . (B9) 

Let us now consider the typical interface conditions at the contact between two elastic 

bodies,   and  , assuming that   is a unit vector of the outer normal to the boundary of body, 

 . There are two types of interface conditions. One is based on the conditions of continuity of 

the velocity and traction: 
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      , (B10) 

       . (B11) 

One uses the free sliding conditions: 

          , (B12) 

           , (B13) 

            . (B14) 

In a general case of acoustic bodies, two types of boundary conditions can be used on 

the surface of the modeling domain. One is based on the given pressure field,   : 

     . (B15) 

This boundary condition can be calculated as follows: 

  (            )    

     (            )  (  )
  (   (            )    ) , (B16) 

  (            )    . (B17) 

The other condition can be based on a given normal projection of the velocity at the 

boundary   : 

       . (B18) 

This boundary condition can be calculated as follows: 

  (            )     (            )  (   (            )      ) , (B19) 

  (            )     (            )    (   (            )      ). (B20) 

Let us consider now the typical interface conditions at the contact between two acoustic 

bodies,   and  , assuming that   is a unit vector of the outer normal to the boundary of body 

 . There is only one type of mathematically correct interface condition for two acoustic 

bodies: 
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          , (B21) 

      . (B22) 
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LIST OF CAPTIONS 

Figure 1. A sketch of a Lamb test model. 

Figure 2. The original seismograms obtained numerically and analytically. Lamb test 

model. Panel (a) – horizontal component of velocity. Panel (b) – vertical component of 

velocity. 

Figure 3. A sketch of two half-spaces model. 

Figure 4. The original seismograms obtained numerically and analytically. Two half-

spaces model. Panel (a) – horizontal component of velocity. Panel (b) – vertical component of 

velocity. 

Table 1:  Parameters of the multilayed medium shown in Fig. 1 

Figure 5. A sketch of a horizontally-layered model, containing a hydrocarbon (HC) 

reservoir (layer #7) with relatively low velocities of seismic wave propagation. 

Figure 6. Snapshots of the wave propagations at 0.4514 s with the gray scale representing 

the amplitude of the wave velocity.. Panel (a) represents the wave propagation in the acoustic 

medium (Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium 

(Models 1 and 2). The left side of each panel corresponds to the models without the HC 

reservoir, while the right side corresponds to the models with the HC reservoir. 

Figure 7. Snapshots of the wave propagations at 0.6438 s. with the gray scale representing 

the amplitude of the wave velocity.  Panel (a) represents the wave propagation in the acoustic 

medium (Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium 

(Models 1 and 2). The left side of each panel corresponds to the models without the HC 

reservoir, while the right side corresponds to the models with the HC reservoir. 

Figure 8. Seismograms corresponding to the vertical component of the wave velocity. 

Panel (a) represents seismograms computer simulated for the acoustic medium (Models 3 and 

4), while panel (b) shows the corresponding seismograms for the elastic medium (Models 1 
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and 2). The left side of each panel corresponds to the models without the HC reservoir, while 

the right side corresponds to the models with the HC reservoir. The distance is plotted 

horizontally. The time is plotted vertically. 

Figure 9. Seismograms corresponding to the horizontal component of the wave velocity. 

Panel (a) represents seismograms computer simulated for the acoustic medium (Models 3 and 

4), while panel (b) shows the corresponding seismograms for the elastic medium (Models 1 

and 2). The left side of each panel corresponds to the models without the HC reservoir, while 

the right side corresponds to the models with the HC reservoir. The distance is plotted 

horizontally. The time is plotted vertically. 

 

Figure 10. An example of nonuniform  grid with different cell sizes in different areas. 

Figure 11. A sketch of a horizontally-layered background model, containing sixteen 

fractures. 

Figure 12. A fragment of the discretization grid used for modeling the wave propagation 

in the medium with a fracture zone. 

Figure 13. Snapshots of the wave propagations at 0.8 s with the gray scale representing the 

amplitude of the wave velocity.. Panel (a) represents the wave propagation in the acoustic 

medium, while panel (b) shows the wave propagation in the elastic medium. The left side of 

each panel corresponds to the models without any fracture, while the right side corresponds to 

the models with the fractures. 

Figure 14. Seismograms representing the seismic signals for a model with fractures. 

Panel (a) represents seismograms for the acoustic medium, while panel (b) shows the 

corresponding seismograms for the elastic medium. The left panels correspond to the 

horizontal component of the wave velocity, while the right panels corresponds to the vertical 

component of the wave velocity. The distance is plotted horizontally. The time is plotted 

vertically. 
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Figure 15. Seismograms representing the difference between seismic signals obtaining 

in the case of fractures and in the case without any fracture. Panel (a) represents right parts of 

seismograms computer simulated for the acoustic medium, while panel (b) shows the corresponding 

right parts of seismograms for the elastic medium. The left side of each panel corresponds to the 

horizontal component of the wave velocity, while the right side corresponds to the vertical 

component of the wave velocity. The distance is plotted horizontally. The time is plotted 

vertically. 
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LIST OF TABLES 

Table 1:  Parameters of the multilayed medium shown in Fig. 1 

The number 

of the layer 

Density 

kg/m
3
 

P-wave velocity, 

m/sec 

S-wave velocity, 

m/sec 

Thickness, m 

1 2100 2600 1100 60 

2 2300 3200 1960 70 

3 2300 3700 2260 150 

4 2400 4000 2450 340 

5 2500 4300 2630 360 

6 2600 4500 2750 270 

7 2300 3200 1700 60 

8 2600 4600 2820 80 

9 2700 4800 2940 70 

10 2800 5400 3300 2601 
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Table 2:  Parameters of the multilayed medium shown in Fig. 7 

The number 

of the layer 

Density 

kg/m
3
 

P-wave velocity, m/s S-wave velocity, m/s Thickness, m 

1 2000 2170 674 500 

2 2300 2130 795 100 

3 2200 2500 1090 300 

4 2300 2680 1220 100 

5 2400 3000 1385 400 

6 (with 

fractures)) 

2700 5550 3144 100 

7 2800 6000 1250 150 

8 2850 6000 1550 4000 

Within the 

fractures 

1350 2775 1572 − 
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LIST OF FIGURES 

 

Figure 1. A sketch of a Lamb test model. 

 

Figure 2. Seismograms obtained numerically using the grid-characterisitic method and analytically for 

the Lamb test model. Panel (a) – horizontal component of the velocity. Panel (b) – vertical component 

of the velocity. 
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Figure 3. A sketch of two half spaces model. 

 

Figure 4. The original seismograms obtained numerically and analytically. for 

two half spaces model. Panel (a) – horizontal component of the velocity.  

Panel (b) – vertical component of the velocity. 

 

Figure 5. A sketch of a horizontally-layered model, containing a hydrocarbon (HC) reservoir  
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(layer #7) with relatively low velocities of seismic wave propagation. 



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

 

50 

 

 

Figure 6. Snapshots of the wave propagations at 0.4514 s with the gray scale representing the 

amplitude of the wave velocity. Panel (a) represents the wave propagation in the acoustic medium 

(Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium (Models 1 and 2). 

The left side of each panel corresponds to the models without the HC reservoir, while the right side 

corresponds to the models with the HC reservoir. 
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Figure 7. Snapshots of the wave propagations at 0.6438 s with the gray scale representing the 

amplitude of the wave velocity. Panel (a) represents the wave propagation in the acoustic medium 

(Models 3 and 4), while panel (b) shows the wave propagation in the elastic medium (Models 1 and 2). 

The left side of each panel corresponds to the models without the HC reservoir, while the right side 

corresponds to the models with the HC reservoir. 
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Figure 8. Seismograms corresponding to the vertical component of the wave velocity. Panel (a) 

represents seismograms computer simulated for the acoustic medium (Models 3 and 4), while panel 

(b) shows the corresponding seismograms for the elastic medium (Models 1 and 2). The left side of 

each panel corresponds to the models without the HC reservoir, while the right side corresponds to the 

models with the HC reservoir. The distance is plotted horizontally. The time is plotted vertically. 
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Figure 9. Seismograms corresponding to the horizontal component of the wave velocity. Panel (a) 

represents seismograms computer simulated for the acoustic medium (Models 3 and 4), while panel 

(b) shows the corresponding seismograms for the elastic medium (Models 1 and 2). The left side of 

each panel corresponds to the models without the HC reservoir, while the right side corresponds to the 

models with the HC reservoir. The distance is plotted horizontally. The time is plotted vertically. 

 

Figure 10. Example of nonuniform  grid (a) with different cell sizes in different areas, and nonuniform 

nodes (b).  
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Figure 11. A sketch of a horizontally-layered background model, containing sixteen fractures. 

 

Figure 12. A fragment of the discretization grid used for modeling the wave propagation in the 

medium with a fracture zone. 
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Figure 13. Snapshots of the wave propagations at 0.8 s with the gray scale representing the amplitude 

of the wave velocity.. Panel (a) represents the wave propagation in the acoustic medium, while panel 

(b) shows the wave propagation in the elastic medium. The left side of each panel corresponds to the 

models without any fracture, while the right side corresponds to the models with the fractures. 

 



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

 

56 

 

 

Figure 14. Seismograms representing the seismic signals for a model with fractures. Panel (a) 

represents seismograms for the acoustic medium, while panel (b) shows the corresponding 

seismograms for the elastic medium. The left panels correspond to the horizontal component of the 

wave velocity, while the right panels corresponds to the vertical component of the wave velocity. The 

distance is plotted horizontally. The time is plotted vertically. 
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Figure 15. Seismograms representing the difference between seismic signals obtaining in the case of 

fractures and in the case without any fracture. Panel (a) represents right parts of seismograms 

computer simulated for the acoustic medium, while panel (b) shows the corresponding right parts of 

seismograms for the elastic medium. The left side of each panel corresponds to the horizontal 

component of the wave velocity, while the right side corresponds to the vertical component of the 

wave velocity. The distance is plotted horizontally. The time is plotted vertically. 

 


