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Abstract—Seismic responses from fractured geological layers are mathematically simulated 
by apply� ing the grid�characteristic method on unstructured tetrahedral meshes with the use 
of high�perfor� mance computer systems. The method is intended for computing complicated 
spatial dynamical pro� cesses in complex heterogeneous media and is characterized by exact 
formulation of contact condi� tions. As a result, it can be applied to the simulation of seismic 
exploration problems, including in regions with a large number of inhomogeneities, 
examples of which are fractured structures. The use of unstructured tetrahedral meshes 
makes it possible to specify geological cracks of various shapes and spa� tial orientations. As 
a result, problems are solved in a formulation maximally close to an actual situation. A 
cluster of computers is used to improve the accuracy of the computation by optimizing its 
duration.  
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INTRODUCTION  

At present, seismic exploration is a major research method applied before direct 
drilling [1]. Seismic exploration research is used to determine the structure of 
rock layers and to identify possible fossil fuel deposits. Numerical experiments 
make it possible to optimize the interpretation of seismic exploration data, 
which reduces the costs of oil extraction. In the numerical simulation of such 



problems, we need to compute seismic wave propagation in rocks with a large 
number of arbitrarily located inhomogeneities that vary in shape, size, 
orientation, and physical properties.  

To describe such a complex heterogeneous medium most precisely, an optimal 
approach is to use unstructured tetrahedral meshes, which make it possible to 
specify inhomogeneities (cracks) of any shape and spatial orientation.  

Since the state of a linear elastic solid medium is mathematically simulated 
using a hyperbolic system of equations [2, 3], an optimal approach is to apply 
the grid�characteristic method [4–11] with high�order interpolation [12], which 
allows one to achieve the highest accuracy in the computation of wave propaga� 
tion.  

Examples of using the grid�characteristic method with high�order interpolation on 
tetrahedral meshes can be found in [11].  

The computation of three�dimensional seismic exploration problems requires 
processing a large amount of data, so high�performance computer systems have 
to be applied. In this work, we used a cluster of distributed memory computers, 
on which the developed algorithms were parallelized for optimal use of the 
resources.  

A favorable difference of the approach used in this work from widespread 
models of effective media [13–16] is that inhomogeneities are directly specified 
in the integration domain. This approach provides more detailed wave response 
patterns and allows us to observe qualitatively new effects. Cracks are speci� fied 
in the form of contact or boundary conditions with the physical properties of the 
crack�saturating fluid indicated to obtain the most accurate approximation to the 
model.  
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Below, we simulate the responses of systems of unidirectional cracks with 
heights comparable to the length of the incident wavefront. A detailed study of 
such geological structures is a major problem in mod� ern seismic exploration.  

1. MATHEMATICAL MODEL According to [2], the state of a linear elastic 
medium is described by the system of equations  



ρ∂tv = (∇⋅σ)т , (1) ∂σ=λ(∇⋅v)I+μ∇⊗v+(∇⊗v) . (2)  

tensor:  

For each of the three systems of the form  

we have the exact expression  

∂tq + A1∂ξ1
q = 0 (4)  

I q(ξ1,ξ2,ξ3,t + τ) = ∑Xiq(ξ1 − ciτ,ξ2,ξ3,t), (5)  

i=1  

t(т)  
Equation (1) is a local equation of motion, in which ρ is the material density; v 
is the velocity of motion; and σ is the Cauchy stress tensor, which is symmetric 
due to the pair law of shear stresses. Equa� tion (2) is derived by differentiating 
Hooke’s law with respect to time. In (2) λ and μ are the Lamé con� stants, which 
determine the properties of the material.  

The following notation is used below: ∂ta ≡ ∂a/∂t is the partial derivative of a 
field a with respect to t; a ⊗ b is the tensor product of vectors a and b , (a ⊗b)ij = 
aibj; and I is the unit tensor of the second rank.  

2. NUMERICAL METHOD  

System (1), (2) is solved numerically using the grid�characteristic method on 
tetrahedral meshes [11]. As a result, correct numerical algorithms can be 
constructed for computing boundary points and points lying on interfaces 
between two media with different Lamé constants and (or) different densities.  

At every integration time step, we choose three arbitrary directions forming a 
basis (which ensures the isotropy of the method) and introduce a new coordinate 
system (ξ1,ξ2,ξ3), in which system (1), (2) can be represented as  

∂tq + A1∂ξ1
q + A2∂ξ2

q + A3∂ξ3
q = 0, (3) where q is a vector composed of three 

velocity components and six components of the symmetric stress  



q=⎡v⎤={v,v,v,σ ,σ ,σ ,σ ,σ ,σ }т. ⎢σ⎥ 1 2 3 11 22 33 23 13 12  

⎣⎦  

whereXi arematricesexpressedintermsoftheelementsofthematrixA1,ci 

aretheeigenvaluesofA1,and τ is the time integration step.  

The eigenvalues of all three matrices are expressed in terms of the density and 
the Lamé constants as follows:  

(6)  

(7)  

      
⎧12 1212121212⎫  

c ∈ ⎪⎛λ + 2μ⎞ ,−⎛λ + 2μ⎞ ,⎛μ⎞ ,−⎛μ⎞ i⎨⎜ρ⎟⎜ρ⎟⎜ρ⎟⎜ρ⎟⎜ρ⎟⎜ρ⎟ ⎬  

,⎛μ⎞ ,−⎛μ⎞ ,0,0,0⎪. ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪  

      
⎩⎭  

In (5) the action of the matrices X i on the unknown vector q can be written as  

⎡(n⋅v)n∓ 1 (N00 ÷σ|)n X ⎡
v⎤=1⎢ c1ρ  

⎤  

⎥
, ⎥  

 
1,2⎢σ⎥ 2⎢ 

⎣ ⎦ ⎢∓ρ(n⋅v)((c1 −c3)N00 +c3I)+  

 
1 ⎢ λ+2μ ⎥  

(N00 ÷σ)(2μN00 +λI)⎥ ⎣⎦  
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⎡v⎤ ⎡v⎤ 1
⎡v−(n⋅v)n∓ 1 (σ⋅n−(N00 ÷σ)n) X3,4⎢⎥=X5,6⎢⎥= ⎢ c2ρ  

⎤  

 

⎥.(8) ⎣σ⎦ ⎣σ⎦ 2⎢∓с ρ(n⊗v+v⊗n−2(n⋅v)N )+n⊗(σ⋅n)+(σ⋅n)⊗n−2(σ÷N )N ⎥  

 
⎣2 00 00 00⎦ The matrices X i has the property  

∑Xi =I−∑Xi. ci =0 ci ≠0  

In (6)–(8) n denotes the unit vector in the direction ξ1 for the matrix A1, N00 is 
the tensor N00 =n⊗n,  

and A ÷B isascalar:  
33  

A ÷ B = ∑∑AijBij . i=1 j=1  

Using high�order interpolation in (5) and, in each of the directions ξ1, ξ2, and ξ3, 
sequentially applying formulas that are similar to (5) and correspond to a system 
of form (4), we obtain a method for finding the solution at the next time level. 
The software package applied involves interpolation of the first to fifth orders 
[12], thereby producing a numerical solution of high accuracy in space. 
Additionally, the applica� tion of the matrices X i is implemented with the help of 
two operators. As a result, the number of interpo� lations for each point and each 
direction is reduced from nine to six.  

3. BOUNDARY AND CONTACT CORRECTORS  



Based on the method applied, the most correct numerical algorithms can be used 
on the boundaries and interfaces of the integration domain.  

Suppose that the boundary condition is written in matrix form as  

Dq(ξ1,ξ2,ξ3,t + τ) = d, (7) where q(ξ1,ξ2,ξ3,t + τ) are the components of the 
velocity and the stress tensor at the next integration step  

at a boundary point. Accordingto(6),eachmatrixAj 

hasthreezeroeigenvalues,threepositive,andthreenegativeones.  

To be definite, assume that the characteristics corresponding to the negative 
eigenvalues of A1 go beyond the integration domain in the ξ1 direction.  

Then, according to (5), the following sum is calculated at the stage of computing 
interior points:  

qin (ξ1,ξ2,ξ3,t + τ) = ∑Xiq(ξ1 − ciτ,ξ2,ξ3,t). ci≥0  

The matrix Ω*, out consists of the eigenvectors corresponding to the negative 
eigenvalues. The corrector at a boundary point is given by the formula  

q(ξ1,ξ2,ξ3,t + τ) = Fqin (ξ1,ξ2,ξ3,t + τ) + Φd, and condition (7) is satisfied to the 
same order as that of the interpolation.  

(8)  

The matrix (DΩ*, out)−1 in formula (8) is found so as to satisfy (DΩ*, out)−1DΩ*, out = 
I,  

while the matrices Φ and F are given by the formulas Φ = Ω*, out(DΩ*, out)−1,  
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In various problems, the boundary conditions are specified as a given external 



force, a given boundary velocity, mixed boundary conditions, and nonreflecting 
boundary conditions with outgoing characteris� tics set to zero. In the case of 
nonreflecting boundary conditions, relation (7) becomes  

Ωout,l/rq(t+τ,r )=0 k гр  

4. CONDITIONS ON A CRACK  

It was found that the most optimal approach in terms of the efficiency of 
computing actual inhomoge� neities [16] is to specify cracks in the form of 
contact or boundary conditions. Several crack models spec� ified by various 
conditions were developed. A crack was assumed to be infinitely thin and filled 
with a fluid (oil, liquefied gas, or water).  

First, we consider two limiting cases of a crack: (i) an open crack filled with a 
fluid; and (ii) a closed crack, i.e., a crack with edges completely joined together 
with no fluid in between.  

The contact glide condition was used in case (i). This is the mixed contact 
condition  

where V p and fτ = 0 are substituted into the contact conditions for one crack 
edge with outward normal p, and −Vp and fτ = 0, for the other.  

In case (ii), we applied the no�glide condition  
in in in in  

Vp =
(ρaca1va +ρbcb1vb −(σa −σb )⋅p)⋅p

, 
ρaca1 + ρbcb1  

 
1 a,in a,in V=

ρc +ρc (ρa((p⋅v )(c1a −c2a)p+c2av )+  

 
−  

(p⋅((ρac1av  

b,in  

)−(σ  



a,in  

b,in ⎞ )⋅p))p⎟.  

+ρb((p⋅v ρa (c1a −c2a)+ρb (c1b −c2b)  

)⋅p−  

a 2a  

b,in  

b 2b )(c1b −c2b)p+c2bv  

a,in  

b,in a,in b,in )−(σ −σ  

−σ Next, a boundary condition with a given velocity was used for each of the 
crack edges.  

 
ρ c +ρ c a 1a b 1b  

+ρbc1bv  

⎠  

Actual cracks are combinations of these two model cracks. A crack is closed at 
some points, while open and filled with a fluid at other points. To simulate such 
a situation, we developed a crack model with dynamical friction. The 
computations were performed according to the following algorithm.  

Step 1. Compute the case of a completely closed crack to determine the force f* 
at the crack edges. Step 2. If f* > k f * , then compute the friction  

    
τp  

fp=  

B,in A,in B,in A,in ρAcA,1ρBcB,1((v ⋅p)−(v ⋅p))+ρAcA,1(σ ÷N00)+ρBcB,1(σ ÷N00)  
 



1 B,in B,in +ρ c ((σ ⋅p)−(σ  

B B,2  

1 A,in ÷N00)p)+
ρ c ((σ ⋅p)−(σ  

A,in  

÷N00)p),  

ρc +ρc A A,1 B B,1  

R=vB,in −(vB,in 
⋅p)p−vA,in +(vA,in 

⋅p)p+  

,  

  
A A,2 f =kf R,  

τpR f = fpp+fτ.  

     
Next, the given external force f is used as a boundary condition on one edge of 
the crack and −f is used on the other.  

Similar computations were performed in the case of a free boundary condition 
specified on the crack, which approximates an empty (gas�saturated) crack. In 
this case, the response is the strongest and its structure can be considered in 
detail.  

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 55 No. 10 2015  

APPLICATION OF THE GRID�CHARACTERISTIC METHOD 1737  

 
Fig. 1. Example of a tetrahedral unstructured mesh with cracks.  



5. UNSTRUCTURED TETRAHEDRAL MESHES  

To specify cracks of complex geometry in geo� logical layers, we applied 
unstructured tetrahedral meshes. They were constructed using a modified 
version of the open library tetgen. An integration domain with inclusions 
(cracks) was set first. Then the domain was uniformly filled with tetra� hedra of 
prescribed minimum volume so that the Delaunay criterion was satisfied. Next, 
the points on the boundaries of the domain and the cracks were optimized for 
the subsequent computations. The mesh was divided into portions to be used on 
distribute�memory computer systems. Each mesh block consisting of the 
coordinates of nodes, tet� rahedra, triangles, and contact pairs of triangles on 
opposite sides of the cracks was stored in a binary file and was used by a 
separate computa� tional node in running the numerical module. Due to the 
separation of the computational domain between the nodes of the computer sys� 
tem at the initial stage, the amount of data sent out in the course of the 
computation was mini� mized, which ensured high efficiency and good 
scalability of the code. Figure 1 gives an example of a tetrahedral mesh.  

6. FEATURES OF THE ROCK MODELS  

In the computations, we used rock models based on geometric and physical 
characteristics maximally similar to actual media.  

The integration domain was a box of size 10 × 10 × 3 km. Inhomogeneities 
(cracks) were placed at a depth of 2 km. The medium parameters were specified 
as similar to carbonates: the velocities of longitudinal and transverse waves 
were Vp = 4500 m/s and Vs = 2250 m/s, respectively, and the density was p = 
2500 kg/m.  

We studied the responses from subvertical cracks of height of about 100 m. The 
following three models were considered: (1) a single crack, (2) a set (cluster) of 
unidirectional cracks (Fig. 2), and (3) a set of intersecting cracks (Fig. 3).  

The initial perturbation was represented by a plane wave pulse (step) with a 
wavelength of 150 m.  

The results were written in the form of wave patterns of velocity fields in the 
entire integration domain and in the form of synthetic seismograms from 
receivers located on the ground surface (day� time surface).  

7. RESULTS  



Response of a single crack. The 3D simulation of wave propagation in a 
medium with a single crack was performed. A plane wavefront propa�  

 
10 km  

Y  

X  

 
Y 3 km X  

Fig. 2. Schematic diagram of the system of cracks in the considered problem with geometric sizes 
indicated.  

Fig. 3. Schematic diagram of crack location in a system of intersecting cracks.  
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(a)  

(a)  

(b) (c)  

Fig. 4. Seismograms of the response of a single liquid�saturated crack.  

(b) (c)  

Fig. 5. Seismograms of the response of a single empty crack.  
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Fig. 6. Two�dimensional wave patterns of the response of a system of unidirectional liquid�saturated 
cracks (a), (b) in a plane along the crack direction and (c) in a plane across the crack direction.  

gated along a crack inclined at a small angle (of about 5°), forming a scattered 
wave response propagating toward the surface, where it was recorded by 
seismometers. Seismograms are displayed in Fig. 4. Each ver� tical line in a 
seismogram represents a one�dimensional plot of the velocity component 
obtained at the corresponding seismometer. The figure shows seismograms for 
three spatial velocity components (a) X, (b) Y, and (c) Z in the case of receivers 
placed across the plane of the cracks. The response consists of the more intense 
transverse and less pronounced longitudinal components of the wave scattered 
by the crack.  

A more intense response was obtained in the case of an empty crack (see Fig. 5). 
Here, the energy of the longitudinal wave prevails in the response.  
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Vx  

Vy  

Vz  

Fig. 7. Seismograms of the wave response of a system of unidirectional liquid�saturated cracks.  

It should be noted that the numerical results are similar to those obtained in 2D 
simulations (see [17– 19]). An issue of special interest is the results obtained 
from the sensors located along the crack plane, since they cannot be obtained in 
two�dimensional simulation.  

Response of a set of cracks. We investigated the response of a set (cluster) of 
unidirectional cracks shown schematically in Fig. 2. The cracks were spaced 
100 m apart, which was equal to their height. The horizontal sizes of the cluster 
were 3 × 3 km.  



Figure 6 shows the wave patterns of the response in planes parallel and 
perpendicular to the cracks. The corresponding seismograms of the response are 
presented in Fig. 7. Figure 8 depicts the two�dimensional area pattern of the 
response (two�dimensional wave pattern in the plane of the medium surface 
where the receivers are located) obtained from all sensors on the surface at three 
different times in the course of arriv� ing the basic energy of the response.  

The major portion of the response is represented by a plane wave of multiphase 
structure propagating upward from the crack cluster. Such a structure is most 
pronounced in the case of empty cracks (Fig. 9), since the response is stronger.  
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t = 1.18 s t = 1.23 s t = 1.28 s Fig. 8. Two�dimensional patterns of the response of liquid�saturated 
surface cracks (area patterns).  
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Fig. 9. Seismograms of the wave response of a system of unidirectional empty cracks. 
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(a) (b)  

Fig. 10. Two�dimensional wave patterns of the response of a system of cross cracks in (a) vertical 
plane and (b) horizontal plane.  

Response of a system of cross cracks. We studied the response of a system of 
cross cracks (see Fig. 3). Figure 10 presents the wave patterns of the response 
after the flat wavefront passed through the system. Specifically, one of the 
vertical planes in which the wavefront propagates is shown in Fig. 10a, while 
the pattern in a horizontal plane intersecting the crack is displayed in Fig. 10b.  

The results of this work were obtained using the computational resources of the 



Multifunctional Com� puting Center of the National Research Center “Kurchatov 
Institute” (http://computing.kiae.ru/).  
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