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Direct numerical simulation of supersonic boundary layer 
stabilization using grooved wavy surface 
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Two-dimensional direct numerical simulation (DNS) of stabilization of supersonic 
boundary layers over a shallow grooved wavy plate at Mach=5.9 is carried out. Numerical 
experiments are conducted for propagation of disturbances generated by a suction-blowing 
actuator placed on the wall. Numerical data obtained for a flat plate are consistent with the 
linear stability theory (LST) and stability experiments in the “Transit-M” wind tunnel of the 
Institute of Theoretical and Applied Mechanics. It is shown that high-frequency forcing 
excites unstable disturbances in the flat-plate boundary layer relevant to the second-mode 
instability. The wavy wall leads to damping of these disturbances in a wide frequency band 
of the forcing. 

Nomenclature 
M  = Mach number 
Re  = Reynolds number 
γ  = specific heat ratio 
Pr  = Prandtl number 
,x y  = longitudinal and vertical Cartesian coordinates 
p  = pressure 
ρ  = density 
T  = temperature 
U  = velocity magnitude 
,u v  = longitudinal and vertical Cartesian components of velocity vector 
μ  = dynamic viscosity 
ω  = forcing frequency 
h  = depth of the wall cavities 
 
Superscripts 
* = dimensional 
 
Subscripts 
∞ = free stream 
w = wall surface 
n = normal to the wall 
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I. Introduction 
AMINAR-turbulent transition leads to substantial increase of the aerodynamic drag and surface heating of 
supersonic vehicles. The ability to increase the laminar run is important for design and optimization of 
aerospace planes. Smoothing and shaping of the vehicle surface help to avoid early transition due to 

roughness, leading-edge contamination as well as cross-flow and Görtler instabilities. However, with these measures 
the laminar run may be still short because of the first and/or second mode instability. The wall cooling, which 
naturally occurs on hypersonic vehicle surfaces, strongly stabilizes the first mode while destabilizes the second 
mode. This indicates that hypersonic laminar flow control concepts should address the second-mode instability. In 
this connection, our study is focused on stabilization of the second mode. Since the most unstable second-mode 
waves are two-dimensional (2D), we perform 2D numerical simulation and do not address 3D disturbances. 

Increasing of Mach number produces a stabilization effect on the flow in free shear layers and wakes. The 
amplification rates of shear-layer disturbances decrease significantly with the growth of compressibility as well 
known from numerous theoretical and experimental studies on stability of mixing layers and wakes (for example, 
Refs. 1, 2). These studies lead us to the assumption that a surface with local boundary-layer separations may 
stabilize the second mode. This hypothesis was motivated by computations3,4 addressing stability of the flow over a 
rounded 5.5º corner. It was shown that the second-mode amplitudes decrease in a separated mixing layer. However 
there is effective excitation of acoustic disturbances in a relatively long separation bubble. They, in turn, generate 
the second-mode waves having appreciable initial amplitudes in the vicinity of reattachment point. We expect that 
with replacement of a long bubble by a sequence of small ones it is feasible to exploit the aforementioned 
stabilization effect and, at the same time, to avoid detrimental acoustic resonances within the bubbles. 

In this paper we discuss results of direct numerical simulation (DNS) of unsteady two-dimensional hypersonic 
flow with local separations relevant to stability. The Navier–Stokes equations are solved numerically for 
disturbances generated by a local forcing (periodic suction-blowing) at the free-stream Mach number 5.9 in the near-
wall flow with a sequence of small separation bubbles over a grooved plate. 

II. Problem formulation and numerical method 
The Navier–Stokes equations for 2D viscous compressible unsteady flows are solved numerically. The 

dimensionless conservative form of these equations is 

 0
t ξ η

∂ ∂ ∂
+ + =

∂ ∂ ∂
Q E G , 

where ( , )ξ η  is a curvilinear coordinate system, ( , )x x ξ η= , ( , )y y ξ η=  are Cartesian coordinates, Q  is a vector of 
conservative variables, E  and G are flux vectors in the ( , )ξ η  coordinate system. These vectors are expressed in 

terms of the corresponding vectors 
c
Q , 
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G  in the Cartesian coordinate system as 
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where det ( ) ( )J x y ξ η⎡ ⎤= ∂ , / ∂ ,⎢ ⎥⎣ ⎦  is the transformation Jacobian. Cartesian vector components for two-dimensional 
Navier–Stokes equations are 
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Here 2 2/ ( 1) ( ) / 2e p u vγ ρ= − + +  is total energy; ( )2 2 2/ ( 1)M / 2H T u vγ
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= − + +  is total specific 

enthalpy; τ is stress tensor with components 

 4 2

3 3xx

u v

x y
τ μ

⎛ ⎞∂ ∂ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠
, 

xy

u v

y x
τ μ

⎛ ⎞∂ ∂ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
, 4 2

3 3yy

v u

y x
τ μ

⎛ ⎞∂ ∂ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠
. 

The fluid is a perfect gas with the specific heat ratio constγ =  and Prandtl number Pr const= . The system of 

equations is closed by state equation 2/ ( M )p Tρ γ ∞= . The dynamic viscosity μ  is calculated using Sutherland’s 

formula ( ) ( )3 2
1 /T S S Tμ = + + , where 110K/S T ∗

∞= . The second viscosity is assumed to be zero. 

The dependent variables are normalized to the corresponding free-stream parameters: pressure – to the doubled 
dynamic pressure 2Uρ∗ ∗

∞ ∞ ; the coordinates – to the reference length L∗  that is of the order of the plate length; time t  
– to L U∗ ∗

∞/ . Computations were carried out at free-stream Mach number M 5.9∞ = , the Reynolds number 
* * * * 6Re / 1.435 10LU ρ μ∞ ∞ ∞ ∞= = × , 1 4γ = . , Pr 0 72= . , * 43.08KT∞ = , * 293KwT = . These flow parameters 

correspond to the “Transit-M” wind tunnel of the Institute of Theoretical and Applied Mechanics (Novosibirsk) 
where stability experiments on similar configuration will be carried on in the nearest future. The dynamic viscosity 
μ  is calculated using Sutherland’s formula ( ) ( )3 2

1 /T S S Tμ = + + , where 110K/S T ∗
∞= . 

The Navier–Stokes equations are integrated numerically using an implicit finite-volume method with the second-
order approximation in space and time. We use a quasi-monotonic Godunov-type scheme (TVD scheme) with Van-
Leer limiter.5 This gives a system of nonlinear algebraic equations, which is solved using the Newton iteration 
method. At every iteration step the corresponding linear system is solved using the GMRes method. Note that this 
approach is most efficient if the computational domain contains shock waves and other strong spatial 
inhomogeneities of the flow, such as boundary-layer separation. Despite dissipative nature of the TVD scheme, it 
was feasible to perform numerical simulations of boundary-layer receptivity6 and stability5 (including configurations 
with separation bubbles4), as well as the hypersonic laminar flow control using porous coatings.7 

Computations are carried out for flow over a grooved wavy plate with 9 cavities. The surface shape is shown in 
Fig. 1 and given by the formula 

 
( )( )

0, 0.4 1.2
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cos 0.4 /0.1 1 , 0.4 1.2

x x
y x

h x xπ

⎧ < ∪ >⎪⎪⎪= ⎨⎪ − − < <⎪⎪⎩
 

where the depth 0.015h =  approximately equals to the doubled boundary-layer thickness (2δ ). For the considered 
flow parameters 0.008δ =  at the station 0.5x =  located on the flat plate region. 

The boundary conditions are: no-slip conditions on the lower boundary of computational domain ( 0u v= = ), 
the free-stream conditions on the left (inflow) and upper boundaries ( 1u = , 0v = , 21/ Mp γ ∞= , 1T = ), and a 
linear extrapolation from interior for the dependent variables u , v , p  and T  on the right (outflow) boundary (fi – 
2fi-1 + fi-2 = 0 – “soft” boundary conditions). The plate surface is isothermal with the temperature 6.8wT = . 
Numerical simulations require an additional condition on the wall pressure. This condition is obtained by 
extrapolation of the near-wall pressure to the surface assuming that / 0wp n∂ ∂ = .  

Computations are performed on a curved orthogonal grid with 2501 241×  nodes. The grid is generated using 
numerical conformal mapping of a rectangle onto the computational domain.8 It is clustered near the surface so that 
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55% of nodes are within the boundary layer or in the separation region with the mixing layer. 
The problem is solved in two steps. First, a steady laminar flow field is computed using a time-dependent 

method. Then, unsteady disturbances are imposed onto the steady solution – a local periodic suction-blowing is 
introduced on the wall via the boundary condition for the mass-flow perturbation: 

 ( ) ( )1
1 2

2 1

sin 2 sinw w
w

v x x
q x t t x x x

U x x
ρ

ε π ω
ρ

∗ ∗

∗ ∗
∞ ∞

⎛ ⎞− ⎟⎜ ⎟, = = , ≤ ≤⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
, 

where x1 = 0.05 and x2 = 0.087 are boundaries of the suction-blowing region.  
The calculations were conducted at the different dimensionless forcing frequencies / 100L Uω ω∗ ∗ ∗

∞= = , 125 , 
130 , 135 , 145 , 150 , 160 , 165 , 168 , 175 , 180  and 190 . It was found that at 168ω =  the actuator effectively 
generates the second-mode disturbance having its maximum amplitude near the outflow boundary of the 
computation domain. Other frequencies are investigated to clarify robustness of the stabilization using wavy walls. 
To ensure linear evolution of disturbances before separation and, hence, to perform comparisons with the linear 
stability theory (LST), we choose the forcing of small amplitude 310ε −= . Note that the numerical error of the 
steady solution should be much lower than the disturbance amplitude; i.e., the steady flow needs to be calculated 
with high accuracy. 

In order to adapt the implicit scheme (suitable for steady problems) to simulations of unsteady flow fields, the 
following approach has been developed. At every time step the system of finite-difference equations is solved with 
prescribed accuracy that gives a quasi-steady solution at a particular time moment. With sufficiently small time 
intervals, a sequence of these solutions represents a solution of unsteady problem. The computation is continued 
until a time-periodic disturbance field sets in (this occurs at 1.26t > ). 

III. Numerical results 

A. Steady flow 
The computed steady-flow density field over a grooved wavy plate is shown in Figure 1. The viscous-inviscid 

interaction leads to formation of a shock wave in the leading-edge vicinity. Further downstream, the cavities induce 
oblique shocks whose interaction with the boundary layer gives recirculation zones inside the cavities (with negative 
horizontal velocity as shown in Fig. 2b). In the vicinity of each separation and reattachment points, a compression 
wave is clearly observed. 

The upper boundary of each separation region is almost a straight line that is typical for supersonic flows. Thus 
the upper boundary of the whole mixing layer over the wavy plate remains almost unchanged compared to the flat 
plate case (Fig. 2a). Moreover the temperature in the vicinity of the grooved wavy surface is close to that in the flat-
plate case (Fig. 3); i.e., cavities cause relatively small periodic temperature perturbations without average 
overheating. Therefore one may conclude that the chosen grooved surface weakly affects the global flow field over 
the boundary layer. At the same time this surface produces a mixing layer which bridges the cavities and resembles 
a free shear layer that is almost parallel. It is assumed that such a mixing layer could stabilize the boundary layer 
disturbances without detrimental effects. 

B. Unsteady flow 
At first disturbance evolution is computed for a flat plate. In this case, the computational domain is a rectangular 

of dimensions 1.25 0.27× , the flow parameters and the boundary conditions are the same as in Section II. Several 
frequencies of the disturbance actuator were tested to choose the most suitable one. It was found that at 168ω =  the 
second-mode instability is excited inside the computation domain and attains its maximum amplitudes near the 
outflow boundary. The suction-blowing actuator generates disturbances of a wide frequency band. The most 
powerful harmonics are slow and fast acoustic waves propagating downstream in the region between the plate 
surface and the bow shock. Inside the boundary layer these waves excite unstable disturbances. 

A fragment of the instantaneous disturbance field (the difference between a disturbed flow field and a steady 
field) inside the boundary layer is shown in Fig. 4. For 0.5x > , the boundary-layer disturbance corresponds to the 
second mode, which is typified by two-cells in the pressure field and rope-like formations in the temperature field. 
The x-location of growth curve (the black line in Fig. 6) agrees with that predicted by the LST.9 Furthermore the 
disturbance spectrum shown in Fig. 7 (the black line) is similar to that observed experimentally in “Transit-M” 
tunnel (private communication). Thus, the considered herein flow parameters are appropriate for analysis of the 
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second-mode disturbances. Furthermore, the numerical method can be used for direct simulations of the boundary-
layer instability (this issue is discussed in Refs. 5, 4). Since the code provides numerical solutions of full Navier-
Stokes equations, it can be also used for calculations of nonlinear disturbances in separation bubbles. 

In the case of grooved plate, the disturbances over the mixing layer behave similar to the flat plate case (Fig. 5) 
because the upper boundary of mixing layer is weakly affected by the separation bubbles within the cavities. Inside 
the boundary layer, evolution of disturbances is completely different. As shown in Fig. 6 for the disturbance of fixed 
frequency 168ω = , on a flat plate the second mode amplifies and reaches its maximum amplitude at 0.93x ≈ , 
while on the grooved plate the disturbance damps sharply. Comparison of the disturbance spectra at the station 

0.9x =  (Fig. 7) shows that the grooved surface produces stabilization effect in rather wide frequency band 
140 190ω< < . 

Note that this positive effect was not observed in the previously investigated case of a relatively long separation 
bubble over the rounded compression corner.4 It can be explained by comparison of the pressure disturbance fields 
inside the separation bubble. In the compression corner, a waveguide is formed inside a long separation zone and 
acoustic waves of appreciable amplitudes are excited via the resonance mechanism. These acoustic waves 
effectively generate the boundary-layer disturbances growing downstream from the reattachment point. For the 
configuration considered herein, the separation bubbles are relatively short that prevents from resonant excitation of 
acoustic disturbances within cavities (Fig. 8). Furthermore, the boundary-layer reattachments on the groove tops are 
smooth and relatively short that also prevents from the intensive second-mode growth in these regions.  

IV. Conclusions 
Stability of the separated supersonic near-wall flow over a grooved plate is simulated by means of numerical 

integration of two-dimensional Navier–Stokes equations. For this purpose, perturbations of the blow-suction type, 
local in space and harmonic in time, are introduced into the boundary layer upstream from the grooved region. 

It is shown that high-frequency forcing effectively excites the second mode in the boundary layer flow. 
Upstream from the first separation bubble this unstable mode behaves like in the flat-plate case. Then it is stabilized 
over the grooved surface where the boundary-layer is transformed to the mixing layer bridging neighboring cavities.  

The wavy surface weakly affects the acoustic component of disturbances in the boundary layer, i.e., the grooved 
plate does not produce detrimental effects associated with secondary reflections of acoustic waves in the separation 
regions. Such effects could lead to resonant amplification of disturbances and, as a consequence, trigger early 
transition. Nevertheless, this 2D simulation does not capture three-dimension structures such as Görtler vortices and 
streaks. This issue will be addressed by 3D DNS studies in the nearest future.  

In summary, the numerical simulations confirm the concept of boundary-layer stabilization with the use of a 
wavy wall producing a relatively stable free shear layer at sufficiently high free-stream Mach numbers. This 
expectation will be validated by experiments to be conducted in the Transit-M tunnel. 
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Figure 1. Density field of steady flow. 

a)

b)
Figure 2. Horizontal velocity field of steady flow. 

 
Figure 3. Steady flow temperature distribution at the height 0.001 over the surface. 
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Figure 5. Pressure disturbance field over the flat (top) and wavy (bottom) plates for ω = 168. Arrow shows 
location of the sensor. 

Figure 4. Fields of pressure (top) and temperature (bottom) disturbances over the flat plate for ω = 168 in the 
range of maximum growth rate. 

Figure 6. The wall pressure disturbance for ω = 168 at t = 1.5. 1 – boundaries of the grooved region, 2 –
sensor location (x =0.9). 
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Figure 7. Spectrum of the wall pressure disturbance at the sensor station x = 0.9. 

 
Figure 8. Pressure disturbance fields in separation bubbles over the compression corner4 and inside
cavities on the grooved plate. 


