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1. INTRODUCTION

Celestial mechanics is one of the popular domains
of application of symbolic computation methods.
In astrodynamics computer algebra methods are
much less common. Problems of orientation of artifi�
cial Earth satellites are one of the biggest sections of
astrodynamics. Designing orientation systems for
Earth artificial satellites is one of the important direc�
tions of development of space engineering. Satellite
orientation can be done with the help of both active
and passive methods. Design of passive orientation
systems can employ properties of the gravitational and
magnetic fields, atmospheric drag, solar radiation
pressure, gyroscopic properties of rotating bodies, etc.
Passive orientation systems possess an important
property, viz. they can function for a long time without
energy consumption. Gravitational systems are most
common of all passive orientation systems. Their
operation is based on the fact that the satellite with
unequal principal central moments of inertia in the
central Newtonian force field has 24 equilibrium posi�
tions at the circular orbit, including 4 stable positions
[1]. With rotors rotating with the constant angular
velocity with respect to the satellite body added to its
design, one can obtain new, more complex equilib�
rium positions of the gyrostat satellite that are interest�
ing in terms of practical application. A great number of
works deal with the problem of determining equilib�
rium positions of a gyrostat satellite. Dynamics of sat�
ellites with gravitational orientation systems are con�
sidered in detail in [1]. In [2–6], all equilibrium posi�
tions of a gyrostat were determined for some special
cases where the vector of gyrostatic moment is parallel
to one of the central axes of inertia of the gyrostat sat�

ellite or is in one of the planes formed by the principal
central axes of inertia.

The general case of the gyrostat problem was first
considered in [7], where the results of symbolic study of
dynamics of a satellite subjected to the gravitational and
gyrostatic moments are given. In this work, we propose
a method for determining all equilibrium positions of
the gyrostat satellite for given values of the vector of
gyrostatic moment and principal central moments of
inertia, which based on the algorithm of constructing
Groebner bases and the concept of resultant, and obtain
their existence conditions depending on four dimen�
sionless parameters of the system. We found bifurcation
values of the parameters for which the number of equi�
librium positions changes. We performed detailed
numerical analysis of evolution of existence domains of
different numbers of equilibria in the space of the
dimensionless parameters.

Symbolic�numerical methods of determining
equilibrium positions presented in this work have been
successfully applied before to analyze aerodynamic
and gravitational forces affect equilibrium orienta�
tions of the satellite [8].

2. EQUATIONS OF MOTION

Consider the problem of rotary motion of a
gyrostat satellite (a satellite or gyrostat, in what fol�
lows) that is a solid body with statically and dynami�
cally balanced rotors placed inside it. We consider the
angular velocities of rotation of rotors with respect to
the satellite body to be constant and the center of mass
of the gyrostat satellite to be moving at a circular orbit.
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To write down the equations of motion, we intro�
duce two right Cartesian systems of coordinates with
the coordinate origin at the center of masses O. OXYZ
is the orbital system of coordinates. The OZ axis is
directed along the radius vector that connects the cen�
ter of mass of the Earth and the gyrostat; the OX axis is
directed along the vector of the linear velocity of the
center of mass O. Oxyz is the system of coordinates
associated with the gyrostat satellite; Ox, Oy, and Oz
are the principal central axes of inertia of the gyrostat
satellite. We use the Euler angles ψ, ϑ, and ϕ to deter�
mine orientation of the coordinate system Oxyz with
respect to the orbital system of coordinates. The direc�
tion cosines of the axes of the system of coordinates
Oxyz in the orbital system of coordinates OXYZ can be
expressed via Euler angles using the relations [7]

(1)

a11 x X,( )cos ψ ϕcoscos= =

– ψ ϑ ϕ,sincossin

a12 y X,( )cos ψ ϕsincos–= =

– ψ ϑ ϕ,coscossin

a13 z X,( )cos ψ ϑ,sinsin= =

a21 x Y,( )cos ψ ϕcossin= =

+ ψ ϑ ϕ,sincoscos

a22 y Y,( )cos ψ ϕsinsin–= =

+ ψ ϑ ϕ,coscoscos

a23 z Y,( )cos ψ ϑ,sincos–= =

a31 x Z,( )cos ϑ ϕ,sinsin= =

Then, we can write the equations of motion of the
gyrostat satellite with respect to its center of mass as
follows [1, 7]:

(2)

(3)

In Eqs. (2) and (3), A, B, and C are the principal
central moments of inertia of the gyrostat, p, q, r and

, ,  are projections of the absolute angular
velocity and projections of the vector of gyrostatic
moment of the gyrostat onto the axes Ox, Oy, and Oz,
and ω0 is the angular velocity of the center of mass of
the gyrostat moving at a circular orbit. The dot stands
for differentiation with respect to t.

a32 y Z,( )cos ϑ ϕ,cossin= =

a33 z Z,( )cos ϑ.cos= =

Ap· C B–( )qr 3ω0
2 C B–( )a32a33–+

– H2r H3q+ 0,=

Bq· A C–( )rp 3ω0
2 A C–( )a33a31–+

– H3p H1r+ 0,=

Cr· B A–( )pq 3ω0
2 B A–( )a31a32–+

– H1q H2p– 0,=

p ψ· a31 ϑ
·

ϕcos ω0a21+ + p ω0a21,+= =

q ψ· a32 ϑ
·

ϕ ω0a22+sin– q ω0a22,+= =

r ψ· a33 ϕ· ω0a23+ + r ω0a23.+= =

H1 H2 H3
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Fig. 1. ν = 0.2, h3 = 0.01.
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Fig. 2. ν = 0.2, h3 = 0.4.
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3. EQUILIBRIUM POSITIONS
OF THE GYROSTAT SATELLITE

Setting ψ = ψ0 = const, ϑ = ϑ0 = const, ϕ = ϕ0 =

const and H1 = /ω0, H2 = /ω0, H3 = /ω0 in
(2) and (3), we obtain, when A ≠ B ≠ C, the equations

(4)

that help us to find equilibrium positions of the
gyrostat satellite in the orbital coordinate system. For
further study, the equivalent system

(5)

which is obtained by projecting (4) onto the axes of the
orbital coordinate system is more convenient to use.
Substituting the expression for the direction cosines
from (1) into (4) or (5), we arrive at the system of three
equations in the unknowns ψ, ϑ, and ϕ.

Another, more convenient, way to close Eqs. (5) is
to add six conditions of orthogonality of the direction
cosines

(6)

H1 H2 H3

C B–( ) a22a23 3a32a33–( ) H2a23 H3a22,–=

A C–( ) a23a21 3a33a31–( ) H3a21 H1a23,–=

B A–( ) a21a22 3a31a32–( ) H1a22 H2a21,–=

Aa11a31 Ba12a32 Ca13a33+ + 0,=

Aa11a21 Ba12a22 Ca13a23+ +

+ H1a11 H2a12 H3a13+ +( ) 0,=

4 Aa21a31 Ba22a32 Ca23a33+ +( )

+ H1a31 H2a32 H3a33+ +( ) 0,=

a11
2 a12

2 a13
2+ + 1,=

a11a21 a12a22 a13a23+ + 0,=

a21
2 a22

2 a23
2+ + 1,=

a11a31 a12a32 a13a33+ + 0,=

Equations (5) and (6) form the closed algebraic
system of equations with respect to the nine unknown
direction cosines that define the equilibrium positions
of the gyrostat. For the system of equations (5) and (6),
we state the following problem: for given A, B, C, H1,
H2, and H3, find all nine direction cosines, i.e., all
equilibrium positions of the gyrostat. The system of
equations (5) and (6) in nine unknowns was solved for
some special cases. When the vector of gyrostatic
moment is parallel to one of the principal central axes
of inertia of the gyrostat satellite, say, Oy, given H1 = 0,
H2 ≠ 0, H3 = 0 [2, 3, 6], all equilibrium positions were
found analytically depending on two dimensionless
parameters of the problem and sufficient conditions of
stability of these equilibrium positions were obtained
in the form of simple inequalities. The solution of the
problem when the vector of gyrostatic moment is par�
allel to the plane of any two principal central axes of
inertia, say, Oxz (H1 ≠ 0, H2 = 0, H3 ≠ 0) is obtained in
[4, 5].

For H1 = H2 = H3 = 0, system (5), (6) was proved to
have 24 solutions, which determine equilibrium orien�
tations of the satellite that is a solid body [1].

In this work, we study the equilibrium positions of
the gyrostat for the general case when H1 ≠ 0, H2 ≠ 0,
H3 ≠ 0. The general case of the problem was first con�
sidered in [7]. As shown in [7], the system of equations
(5), (6) can be resolved with respect to a11, a12, a13, a21,
a22, and a23 as follows

a31
2 a32

2 a33
2+ + 1,=

a21a31 a22a32 a23a33+ + 0.=

a11 4 C B–( )a32a33/F,=

a21 4 I3 A–( )a31/F,=
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Fig. 3. ν = 0.2, h3 = 0.8.
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(7)

Here, F = H1a31 + H2a32 + H3a33, I3 = A  + B  +

C .

To solve algebraic system (5), (6), we applied the
algorithm of constructing the Groebner bases [9]. The
method of constructing the Groebner basis is an algo�
rithmic procedure for complete reduction of the prob�
lem in the case of the system of polynomials in many
variables to the polynomial in one variable. Using the
Groebner[gbasis] Maple package [10] for constructing
Groebner bases with linear ordering with respect to
tdeg powers, we constructed the Groebner basis for
system of nine polynomials (5), (6) with nine variables
aij (i, j = 1, 2, 3). Below are the polynomials from the
constructed Groebner basis that depend only on three
variables a31, a32, and a33

(8)

a12 4 A C–( )a33a31/F,=

a22 4 I3 B–( )a32/F,=

a13 4 B A–( )a31a32/F,=

a23 4 I3 C–( )a33/F.=

a31
2 a32

2

a33
2

16 B C–( )
2a32

2 a33
2 C A–( )

2a33
2 a31

2+[

+ A B–( )
2a31

2 a32
2
]

=  H1a31 H2a32 H3a33+ +( )
2 a31

2 a32
2 a33

2+ +( ),

4 B C–( ) C A–( ) A B–( )a31a32a33

+ H1 B C–( )a32a33[

+ H2 C A–( )a33a31 H3 A B–( )a31a32 ]+

× H1a31 H2a32 H3a33+ +( ) 0,=

One fails to obtain an algebraic equation of one
unknown in the Groebner basis since the number of
parameters is great. Nevertheless, taking into account
that the first two equations in (8) are homogeneous
and moving to new unknowns x = a31/a33, y = a32/a33,
hi = Hi/(B – C), ν = (B – A)/(B – C), we obtain the
following algebraic system of equations with respect to
the variables x and y:

(9)

where

Using the concept of resultant to eliminate y from
system (9), we obtain, by symbolic computations of
the determinant of the resultant matrix, the algebraic
equation of the twelfth order with respect to x

a31
2 a32

2 a33
2+ + 1.=

a0y2 a1y a2+ + 0,=

b0y4 b1y3 b2y2 b3y b4+ + + + 0,=

a0 h2 h1 νh3x–( ),=

a1 h1h3 4ν 1 ν–( ) h1
2 1 ν–( )h2

2–+([+=

– νh3
2
]x νh1h3x2

,–

a2 1 ν–( )h2 h1x h3+( )x,–=

b0 h2
2
,=

b1 2h2 h1x h3+( ),=

b2 h2
2 h3

2 16–+( ) 2h1h3x h1
2 h2

2 16ν2–+( )x2
,+ +=

b3 2h2 h1x h3+( ) 1 x2+( ),=

b4 h1x h3+( )
2 1 x2+( ) 16 1 ν–( )

2x2
.–=

p0x12 p1x11 p2x10 p3x9 p4x8 p5x7+ + + + +
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Fig. 5. ν = 0.2, h3 = 3.264.
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(10)

with its coefficients being the eighth�order polynomi�
als of the parameters of the system h1, h2, and h3:

(11)

Expressions for the coefficients of Eq. (10) are
quite bulky and occupy more than two text pages
(78 lines), which is why we do not give them here since
the volume of this work is limited. The coefficients of
Eq. (10) are given in full form in the preprint [12].

The number of real roots of the algebraic equation
obtained is even and not greater than 12. Substituting
the value of the real root x1 of algebraic equation (10)
into the equations of system (9), we find the coincid�
ing root y1 of these equations. For each solution x1 and
y1, one can find two values of a33 from the last equation
of system (8) and, then, their respective values a31 and
a32. Thus, each real root of the algebraic equation is
matched with two sets of values a31, a32, a33 that, by
(7), unambiguously determine all other direction
cosines a11, a12, a13, a21, a22, a23. Hence, the gyrostat
satellite at the circular orbit can have no more than
24 equilibrium positions.

Using Eqs. (10), (11) together with systems (7)–(9),
one can find all equilibrium positions of the gyrostat
satellite for given values of parameters.

+ p6x6 p7x5 p8x4 p9x3 p10x2+ + + +

+ p11x p12+ 0,=

p0 h1
4h3

4
ν

6
,–=

p1 = 2h1
3h3

3
ν

5 2h1
2 h2

2
ν 1–( )– 2ν h3

2 2ν 2–+( )–[ ] …,

p11 = 2h1
3h3

3 2h1
2 h2

2
ν 1–( )– 2ν h3

2 2ν 2–+( )–([ ],–

p12 h1
4h3

4
.–=

4. NUMERICAL METHODS 
OF STUDYING EQUILIBRIA

To study equilibrium positions of the gyrostat satel�
lite, we state the problem of finding domains with the
same numbers of real roots of Eq. (10) in the space of
parameters. We considered the possibility to decom�
pose the space of parameters into domains with the
same numbers of real roots by symbolic computation
of the discriminant hyper surface given by the discrim�
inant of polynomial (10). Since expressions for the
coefficients of polynomial (10) are bulky, it is impossi�
ble to study symbolically the system of algebraic equa�
tions that define the sets of singular points of the dis�
criminant hyper surface because it takes several hun�
dreds of symbolic lines to write this system down.

We used Mathematica 8.0 [11] to study the number of
real solutions of Eq. (10) depending on the values of the
parameters. Without loss of generality, we can perform
numerical study given that B > A > C; then, 0 < ν < 1. The
projections of the gyrostatic moment h1, h2, and h3 can
take any non�zero values. Coefficients of Eq. (10)
depend on four dimensionless parameters ν, h1, h2,
and h3; the equations of original system (5) include six
parameters. Reduction of the number of parameters is
critical for the numerical study.

Now, consider properties of algebraic equation (10)
in more detail. It follows from the form of the coeffi�
cients of Eq. (10) that the number of real roots does
not depend on of the signs of the parameters h1, h2, and
h3. Indeed, the parameters h1, h2, and h3 are to even
powers only in the expressions for the coefficients of
Eq. (10) of the even powers of x while the coefficients
of the odd powers of x are h1h3 multiplied by the factor
that only depends on even powers of h1, h2, and h3.
Hence, when the signs of the parameters h1, h2, and h3
change, only the sign of the product h1h3 can change
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Fig. 7. ν = 0.5, h3 = 0.5.
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and, thus, so does the sign of the real roots of Eq. (10).
The absolute value and the number of real roots
remains the same.

We analyzed the number of real roots of Eq. (10)
numerically for positive values h1, h2, and h3 and 0 < ν < 1.
We performed calculations at the nodes of a uniform
grid on the plane (h1, h2) for fixed values of ν and h3.
We found numerically the boundary points at which
the number of real roots changes. In fact, we calcu�
lated the two�dimensional section of the discriminant
hyper surface that is given implicitly by the algebraic

equation of two parameters g(h1, h2) = 0. Experiments
showed that, to obtain smooth boundary curves, one
needs to perform calculations with the step 0.0001.
Computations with such accuracy become very labori�
ous. Indeed, roots at 109 nodes are to be calculated for
a 4 × 4 domain on the plane (h1, h2). This is why we
performed calculations in two stages. At the first stage,
we calculated the number of real roots of Eq. (10) at
107 nodes with the step 0.001. At the second stage, the
number of real roots was calculated in the neighbor�
hood of the approximately calculated boundary
between the domains with the constant numbers of
real roots at the nodes of the grid with the step 0.0001.
Further, for fixed values h2, we found the variable of
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Fig. 9. ν = 0.5, h3 = 2.412.
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Fig. 12. ν = 0.8, h3 = 0.909.



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 40  No. 3  2014

SYMBOLIC–NUMERICAL METHODS 149

boundary points h1 up to the given accuracy by the
dichotomy method applied to the computation seg�
ment and implemented as the Mathematica package.
Numerical methods of solving equations implemented
in Mathematica help to find their roots up to the given
accuracy. This advantage of Mathematica allowed us
to calculate roots of the algebraic equations for very
small values of coefficients not exceeding 10–48 when
the values of parameters h1 and h2 were taken to be 10–6.

Taking into account that Eq. (10) was obtained for
h1 ≠ 0, h2 ≠ 0, h3 ≠ 0, we performed calculations with
increased accuracy with the step 0.000001 in the
neighborhood of zero values of the parameters h1, h2,
and h3.

We performed calculations for the values ν = 0.01,
ν = 0.1, ν = 0.2, ν = 0.3, ν = 0.4, ν = 0.5, ν = 0.6, ν = 0.7,
ν = 0.8, ν = 0.9, and ν = 0.99.

Figures 1–13 show the results of calculations of
evolution of boundaries between the domains with the
same numbers of real roots on the plane (h1, h2) for the
values ν = 0.2 (the value close to the axially symmetric
case of ν = 0 or A = B), ν = 0.5, ν = 0.8 (the value close
to the axially symmetric case of ν = 1 or A = C).
In [12], the boundaries between the domains with the
constant numbers of real roots are shown to be given
by equations of circles for axially symmetric case of
ν = 0 or A = B, while the boundaries between the
domains with the same numbers of real roots are given
by the equations of astroids for axially symmetric case
of ν = 1 or A = C.

Analysis of numerical results shows that, as the
value of the parameter h3 grows, the domains with the
constant numbers of real roots become smaller and,
eventually, disappear completely. The points at the
space of parameters starting from which the domains
with certain numbers of real roots disappear are called
bifurcation points. The table presents results of calcu�
lation of bifurcation values of parameters obtained in
[13].

It follows from the table that the bifurcation value
of the parameter h3, for which the domains with
24 equilibrium solutions (12 real roots) vanish, varies
as h3 = 1 – ν. For the domains with the number of
equilibria equal to 20 (10 real roots), the bifurcation
value of the parameter h3 grows as the parameter ν
increases up to the value ν = 0.6 and decreases as ν
continues to grow. For the domains with the number of
equilibria equal to 16 (8 real roots), the bifurcation
value of the parameter h3 decreases as the parameter ν
grows. The domains with the number of equilibria
equal to 12 become smaller as the value of the param�
eter h3 grows. The central part of these domains van�
ishes in the neighborhood of the origin for h3 = 4. For
h3 ≥ 4, there exist small domains with the number of
equilibria equal to 12 located near the axis Oh2 with the
typical sizes along the Oh1 and Oh2 axes not exceeding
10–1. As the value of h3 grows, these domains become
smaller and move to the right along the Oh2 axis.

Consider the nature of change of the domains with
the number of equilibria equal to 24, 20, 16, 12, and 8
in more detail when ν = 0.2 (Figs. 1–5).

Analysis of numerical results shows that, for ν =
0.2, the domains with the number of equilibria equal
to 24, 20, 16, 12, and 8 exist in the plane (h1, h2) for
h3 < 0.8 (Figs. 1 and 2). In Fig. 1 (ν = 0.2, h3 = 0.01),
the domain with the number of equilibria equal to 24
is in the neighborhood of the origin and is not desig�
nated by any number on the graph. This domain is sep�
arated from the domain with the number of equilibria
equal to 20 by a curve that is very close to an astroid.
These are followed by the domains with the number of
equilibria equal to 16 and 12. There are only 8 equilib�
rium positions beyond the boundaries of the domain
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Fig. 13. ν = 0.8, h3 = 1.629.

Bifurcation values of v and h3

v h3(24/20) h3(20/16) h3(16/12) h3(12/8)

0.01 0.99 0.999 3.959 4.0

0.1 0.90 1.021 3.610 4.0

0.2 0.80 1.048 3.264 4.0

0.3 0.70 1.082 2.950 4.0

0.4 0.60 1.124 2.669 4.0

0.5 0.50 1.182 2.412 4.0

0.6 0.40 1.186 2.167 4.0

0.7 0.30 1.105 1.915 4.0

0.8 0.20 0.909 1.629 4.0

0.9 0.10 0.676 1.245 4.0

0.99 0.01 0.168 0.997 4.0
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with the number of equilibria 12. In Fig. 2 (ν = 0.2,
h3 = 0.4), the sizes of the domains with the number of
equilibria equal to 24, 20, 16, and 12 become smaller
than the respective domains in Fig. 1. For the bifurca�
tion value h3 = 0.8, the domain with the number of
equilibria 24 vanishes (Fig. 3). In Fig. 3 (ν = 0.2, h3 =
0.8), the domain with the number of equilibria 20 is in
the neighborhood of the origin and is not designated
by any number on the graph.

There are only five types of domains with the num�
ber of equilibria equal to 20, 16, 12, and 8 in the inter�
val 0.8 < h3 < 1.048. For the bifurcation value h3 =
1.048, the domain with 20 equilibrium states vanishes
(Fig. 4). Figure 4 shows the domains with the number
of equilibria equal to 16, 12, and 8. There are three
types of domains with the number of equilibria 16, 12,
and 8 in the interval 1.048 < h3 < 3.264. For the bifur�
cation value h3 = 3.264, the domain with 16 equilib�
rium states vanishes (Fig. 5). There are only two types
of domains with the number of equilibria equal to 12
and 8 left in the interval 3.264 < h3 < 4.

Figures 6–13 show evolution of the domains with
the constant number of equilibria for the values of the
inertia parameter ν = 0.5 and ν = 0.8. In Figs. 8 and
12, the domain with 16 equilibrium states is located in
the neighborhood of the origin and is not designated
on the graphs.

When the value of the parameter of gyrostatic
moment h3 exceeds 4, there are only 8 equilibrium ori�
entations for the gyrostat satellite that correspond to
four real roots of Eq. (10). This is in agreement with
physical considerations—for large values of the vector
of gyrostatic moment, equilibria of the satellite are
bounded by the direction and value of this moment.

To conclude, we can say, based on the results
obtained in this work with the help of symbolic–
numerical methods, that the number of equilibrium
positions of the gyrostat satellite does not exceed 24
and cannot be smaller than 8 in the general case.
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