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Abstract. The equilibrium orientations of a satellite in a circular orbit un-
der the influence of gravitational and constant torques are investigated. The
stationary motions of a satellite are governed by a set of nonlinear algebraic
equations. A computer algebra method based on algorithm for the construc-
tion Groebner basis is proposed for determining the equilibrium orientations
of a satellite with a given constant torque vector and given principal central
moments of inertia. It is shown that 24 isolated equilibrium orientations ex-
ist when the module of constant vector is sufficiently small. The equilibrium
orientations are determined by algebraic equation of the sixth degree and are
analyzed numerically.

1 Introduction

Determination of equilibrium orientations of a satellite under the action of external
torques is one of the basic problems of astrodynamics. Such solutions are used in
the design of rather simple, cheap and long-living passive attitude control systems
of satellites. The problem to be analyzed in the present report is related to behavior
of a satellite acted upon by the gravity gradient and constant torques. The constant
torque may be produced actively or caused, for example, by gas or fuel escape from
the satellite. In the absence of constant torque there are 24 equilibrium orienta-
tions of satellite [1], [2] and [3]. The action of some constant torque change this
orientations and can destroy some or even all these equilibria. In [4] the existence
of equilibria for a satellite under the action of the gravity gradient and constant
disturbing torques in some particular cases was indicated. For general values of
constant torque this problem was studied in [5], using aircraft angles approach for
determining of satellite equilibrium orientations. It was shown that for small con-
stant torque there exist 24 equlibria, and the number of equlibria decreases with the
increase of constant torque. Using the above approach, the classification of different
distributions of the number of equilibria as the function of parameters of the prob-
lem, namely, the components of the constant torque, the inertial parameters of the
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satellite and the angular velocity of its orbital motion was done in [6]. A different
method to solve this problem was suggested in [7].

The problem of determining the classes of equilibrium orientations for general
values of constant torque which are determined by real roots of the system of non-
linear algebraic equations is considered in this paper. The investigation a number of
equilibria developing both the Computer Algebra Groebner basis method and the
numerical analysis of these algebraic equations has completed. Evolution of domains
with fixed number of equilibria has investigated numerically in dependence of three
dimensionless system parameters and bifurcation values of the system parameters
corresponding to the qualitative change of these domains have been determined.

2 Equations of motion

Consider the motion of a satellite subjected to gravitational and constant torques
in a circular orbit. We assume that 1) the gravity field of the Earth is central
and Newtonian, 2) the satellite is a triaxial rigid body, 3) the satellite is subjected
to gravity gradient torque and a torque that is fixed with respect to the body of
satellite, so the components of this torque in the body fixed frame are constant.
We introduce two right handed Cartesian coordinate systems with origin in the
satellites center of mass O. OXY Z is the orbital reference frame. The axis OZ is
directed along the radius vector from the Earth center of mass to the satellites one,
the axis OX is in the direction of satellites orbital motion. Oxyz is the satellite
body reference frame; Ox, Oy, Oz are the principal central axes of inertia of the
satellite. The orientation of the satellite body reference frame Oxyz with respect
to the orbital reference frame is determined by the angles of pitch (α), yaw (β) and
roll (γ), and the direction cosines of the axis Ox, Oy, Oz in the orbital reference
frame can be written as [1]

a11 = cos(x,X) = cosα cos β,

a12 = cos(y,X) = sinα sin γ − cosα sin β cos γ,

a13 = cos(z,X) = sinα cos γ + cosα sin β sin γ,

a21 = cos(x, Y ) = sin β,

a22 = cos(y, Y ) = cos β cos γ, (1)

a23 = cos(z, Y ) = − cos β sin γ,

a31 = cos(x, Z) = − sinα cos β,

a32 = cos(y, Z) = cosα sin γ + sinα sin β cos γ,

a33 = cos(z, Z) = cosα cos β − sinα sin β sin γ.

Then equations of the satellites attitude motion take the form [5]:

Aṗ+ (C −B)qr − 3ω2
0(C −B)a32a33 − ã = 0,

Bq̇ + (A− C)rp− 3ω2
0(A− C)a31a33 − b̃ = 0, (2)

Cṙ + (B − A)pq − 3ω2
0(B − A)a31a32 − c̃ = 0;
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p = (α̇ + ω0)a21 + γ̇,

q = (α̇ + ω0)a22 + β̇ sin γ, (3)

r = (α̇ + ω0)a23 + β̇ cos γ.

Here A, B, C are the principal central moments of inertia of the satellite; p, q,
r are the projections of the angular velocity of the satellite in the axes Ox, Oy,
Oz; ω0 is the angular velocity of the center of mass of the satellite, while ã, b̃, c̃
are the components of the constant torque in the same frame. The dot designates
differentiation with respect to time t.

3 Equilibrium orientations of a satellite

Putting in (2) and (3) α = α0, β = β0, γ = γ0, ( α0, β0, γ0 are constants) we get at
A 6= B 6= C the equations

(a22a23 − 3a32a33) = a,

(a21a23 − 3a31a33) = b, (4)

(a21a22 − 3a31a32) = c.

Here

a =
ã

ω2
0(c−B)

, b =
b̃

ω2
0(A− C)

, c =
c̃

ω2
0(B − A)

are the constants that characterize the dimensionless components of the constant
torque.

The system (4) with the following three orthogonality conditions for the direction
cosines

a221 + a222 + a223 = 1,

a231 + a232 + a233 = 1, (5)

a21a31 + a22a32 + a23a33 = 0

can be considered as a system of six algebraic equations for six unknown direction
cosines, which allow us to determine the satellite equilibria in the orbital reference
frame. After a21, a22, a23, a31, a32, a33 are found, the direction cosines a11, a12 and
a13 can be determined from the conditions of orthogonality.

We state the following problem for the system of equations (4), (5): determine
all equilibrium orientations of a satellite when A,B,C, a, b, c are given. It is possible
to see at once that for any given attitude of the satellite there will always exist a, b
and c such that this attitude is an equilibrium orientation. Analytical solution of the
problem of defining all equilibrium orientations of a satellite in general case (a 6= 0,
b 6= 0, c 6= 0,) is impossible. In a previous paper [8] the system of equations (4),
(5) has been solved for a2i and a3i (i = 1, 2, 3) and then reduced to three equations
extremely complex form in a11, a12 and a13 which were found to be unsolvable.
In [5], using the direction cosines in terms of orientation angles (1) and concept
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of resultant, is shown that the system of equations (4), (5) can be reduced to a
single algebraic equation of the sixth degree with real coefficients, which represent
polynomials depending on three dimensionless parameters of the system. To every
real root of this algebraic equation corresponds four equilibrium orientations of a
satellite. Since the number of real roots of the algebraic equation of the sixth degree
does not exceed 6 therefore the satellite subjected to gravitational and constant
torques can have no more than 24 equilibrium orientations in a circular orbit.

In the case a = b = c = 0 it has been proved that the system (4), (5) has 24
solutions describing the equilibrium orientations of a satellite-rigid body. Further
we consider a Computer Algebra approach to define equilibrium orientations of a
satellite. A solution of the system (4), (5) can be obtained using an algorithm for the
construction of Groebner bases [9]. The method of Groebner bases is used to solve
systems of nonlinear algebraic equations. It comprises an algorithmic procedure for
reducing the problem involving polynomials of several variables to investigation of a
polynomial of one variable. Using a computer algebra system Maple we calculate the
Groebner basis of the system (4), (5) under ordering on the total power of variables.
Here we write out the polynomials in the Groebner basis that depend only on the
variables a22, a31, a32 and a33:

ba222 − 3ba32 + 12a31a32 − ac+ 3b = 0,

144a232a
2
33 + (84a− 24bc)a32a33 + 12a2(a232 + a233)

+ a2c2 + a2b2 + b2c2 − 7abc = 0,

12ca333 + 12ba32a
2
33 − b(c2 + 12)a32 − c(b2 + 12)a33 (6)

+ 12ca33a
2
32 + 12ba332 + (ac2 + ab2 − 7bc)a31 = 0,

12aa31a
2
33 + 12ba32a

2
33 + a2ba32 + ab2a31 − (cb2 + ca2 − 7ab)a33 = 0.

The equation in the Groebner basis that depends only from one variable a233 has the
form

p0x
6 + p1x

5 + p2x
4 + p3x

3 + p4x
2 + p5x+ p6 = 0. (7)

Here the coefficients pi (i = 0, 1, 2, 3, 4, 5, 6) are

p0 = 4096,

p1 = −8192,

p2 = 256(16− 6u2 + 20uc+ 17v),

p3 = −128(u2v + 8c2u2 − 8u2 + 40cu+ 5cuv + 34v − c2v2),
p4 = 16(9u4 + 257u2 − 43u2v + 16v2 + 210cuv − 20cuv2 + 20cu3 + 17v2 + 64c2u2),

p5 = 8(4u2v2 − 34u2v − 38u4 − 3u4v − 130cu3 + 5cu3v − 20cuv2 − 4c2v3

− 68c2u2v + 3c2u2v2 − 10c3uv2),

p6 = (4u2 + u2v + c2v2 + 5cuv)2, v = a2 + b2, u = ab.

Equation (7) together with (6) and (4) can be used to determine all the equilibrium
orientations of a satellite under the influence of gravitational and constant torques.
Using the equations from the Groebner basis (6), we can show that every real root of
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equation (7) corresponds to four equilibrium solutions of system (4), (5). Since the
number of real roots of equation (7) does not exceed 6, the number of equilibrium
orientations can be no more than 24. Analysis of special cases when only one pa-
rameter has a nonzero value (the constant torque vector coincides with the principal
axes of inertia of the satellite) say a 6= 0, b = c = 0, was studied in [5] another
special cases, one of them for example b = c 6= 0, was presented in [6]. Evolution
of domains with fixed number of equilibria was investigated numerically from (7) in
dependence of tree system parameters a, b, c. The regions of the (a, b, c) space where
equilibria exist are limited by the inequalities [5]

a2 + b2 + c2 ≤ 5, a2 + b2 ≤ 4, c2 + b2 ≤ 4, a2 + c2 ≤ 4. (8)

From the form of coefficients of equation (7) it follows that the parameters b and c
occur symmetrically in it. In the terms of the coefficients pi we can separate out the
factor abc so that a, b and c occur only in even powers, so the transformation a→ −a
leads to a distribution of number of equilibria symmetric with respect to either b -
or c - axis. For the numerical investigation of equation (7) it is sufficient to consider
the domain of the parameters delimited by inequalities (8) and the inequalities

−2 ≤ a ≤ 2, 0 ≤ b ≤ 2, 0 ≤ c ≤ 2; (9)

in the plane (b, c) for the fixed the parameter a can be confined to the sector between
the lines c = b and c = 0 by virtue of symmetry. On the diagonal of the square
|b| ≤ 2, |c| ≤ 2; when |b| = |c|, there is additional restriction |b| ≤

√
2.

We have analyzed numerically the dependence of the number of real roots of
equation (7) in space of parameters delimited by inequalities (8), (9). We used
classification results [6] of different distributions of number of real roots for values
of parameters in the domain (8), (9). Here, using Computer Algebra applications,
the analytic equations of the boundary surfaces between the regions with different
number of equilibria were found. In this work both the classification of different
distributions of number of equilibria and the coordinates of the bifurcations points
combining analytical and numerical analysis were made.

For the fixed values of parameter a the number of positive real roots was de-
termined in the plane (b, c) and domains with the fixed number of real roots were
obtained. Using the parameter a in accordance with bifurcations points, mentioned
above, we can obtain the numerical results with the same regions of constant number
of equilibria. Critical values of the parameter a are the following

−2;
−35 +

√
193

12
;−3

2
;
−25 +

√
73

12
;−7

6
;−2 +

√
22

6
;−1;−39

35
;−2

3
;−1

2
;

2−
√

22

6
;
−2 +

√
22

6
; 2.

For the first critical value a = −2 the parameter values b = c = 0 are the only
ones which correspond to equlibria (there are four of these). In the interval −2 <

a < −35+
√
193

12
8 equlibria are existed. For the next interval −35+

√
193

12
< a < −3

2
16
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equlibria are existed, and after critical value a = −25+
√
73

12
until the value a = 0 there

are domains of existence of 24 equlibria. As it was mentioned above, the number of
equlibria to a positive value of a being symmetric with respect to either b− or c−
axis.

Analysis of numerical results shows that 24 satellite equilibria exist for sufficiently
small constant torques; as the magnitude of constant torque increases, the domain
of existence of equilibria diminishes and when it is large enough, the satellite does
not have a single equilibrium orientation.
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