ISSN 2070-0482, Mathematical Models and Computer Simulations, 2014, Vol. 6, No. 4, pp. 342—350. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © I.B. Petrov, N.1. Khokhlov, 2014, published in Matematicheskoe Modelirovanie, 2014, Vol. 26, No. 1, pp. 83—95.

Modeling of 3d Seismic Problems Using High-Performance
Computing Systems

I. B. Petrov and N. 1. Khokhlov

Moscow Institute of Physics and Technology (State University), Moscow, Russia
e-mail: k_h@inbox.ru
Received September 10, 2012

Abstract—This paper examines some issues in numerical modeling of seismology in three-dimen-
sional space on high-performance computing systems. As a method of modeling, the grid-character-
istic method is used. This method allows accurate staging of different contact conditions and is suitable
for the most physically correct solutions of problems of seismology and seismic prospecting in com-
plex heterogeneous media. We use the grid-characteristic schemes up to the 4th order accuracy inclu-
sive. The software package is parallelized for work in a distributed clustered medium using the MPI
technology. We present the results of the simulation of the Love and Rayleigh surface seismic waves, as
well as the passage of seismic waves initiated by an earthquake’s hypocenter to the earth’s surface
through a multilayer geological formation.
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1. INTRODUCTION

Here we consider some issues in the numerical simulation of some problems in the propagation of wave
disturbances in layered geological media on high performance computing systems. The physical sizes of
the areas of integration in problems of this kind may achieve dozens and hundreds of kilometers. For the
correct modeling of wave disturbances at such distances, high precision numerical methods are needed
that account for the wave properties of the equations at hand and have the possibility of simulating com-
plicated dynamic processes in nonhomogenous geological media with a set of contact and free boundaries.
As such a method, the grid-characteristic method [1] is used here for the numerical solution of the systems
of equations of the mechanics of a deformed solid body. This method allows application of monotonic dif-
ference schemes of a higher order of accuracy [2], construction of the correct numerical algorithms on the
boundaries of domains of integration and on contact boundaries [3]. For some problems of seismics, this
method has already been used in the two-dimensional case [4]; in this work modeling was performed in
the three-dimensional statement.

For correct assignment of large domains of modeling, three-dimensional computational grids with a
sufficient number of nodes are used. The computations on such grids require more CPU time and com-
puter memory resources; to accelerate the computation process, the MPI [5] technology has been used in
this work, which allows the program to work on larger grids (up to 1 billion nodes).

As an example of the problems solved, the results of modeling the Rayleigh and Love surface seismic
waves and their comparison with the theory are presented. The propagation of elastic seismic waves
through a multilayer geological formation is considered; the propagation of disturbances from the hypo-
center of the earthquake to the surface is modeled.

2. MATHEMATICAL MODEL

2.1. Determining equations. We formulate equations of the linear dynamic theory of elasticity, which is
obeyed by the state of infinitely small volume of the linear-elastic medium. We consider the nonstationary
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equations of the theory of elasticity for the case of three variables in the orthonormal system of coordinates
(X1, X2, X3):
pv;, =V, 0

6 = Gyt + Fy.
Here p is the medium density, v, are the components of the drift velocity vector, 6;; and g;; are components
of the Cochi stress and deformation tensors, V ; is the covariant derivative by the jth coordinate, and F} is
the additional right-hand part. The appearance of the 4th-order tensor components g, is determined by
the medium’s rheology. For the linear-elastic case, they have the form

Gijrr = MO0y + L(Oyd jy + 8,0 ji ).

In this correlation, which generalizes Hooke’s law, A and p are Lame’s parameters, and §; is the Kro-
necker delta.

The first line in the system of equations (1) represents the three equations of motion and the second
line represents six rheological correlations. The vector of unknown functions, consisting of nine compo-
nents, has the form

T
u= {V1>V27Vsz5115012,01&022,0237533} .

Then the listed models of a solid permit the system of equations (1) of the dynamics of deformable solid
to be written in the matrix form [6]:

3
Oou Ou
E_EA”’T/’ )
where A ; are matrices of size 9 x 9:
o 0 0-X0 0000
p
0 00 0-L0000
p
0 00 0 0 -1000
N p
1=+20) 0 0 0 0 0 000
0 w000 0000
0 0 -u 0 0 0000
2 00 0 0 0000
0 000 0 0000
2 00 0 0 0000
o 0o o00-Lo o000
p
o 0o 000-Looo
p
0 0 000 0—[1300
A2=10 % 000 0 000
w0 000 0 000
0O 0 000 0 000
0 <(x+20) 00 0 0 0 00
0 0 00 0 000
0O -~ 000 0 000
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00 o0 o00-Lo 00
p
00 o0 o000 -Loo
P
00 0 0000—[%0
As=lo 0 4 000 0 00"
00 0 000 0 00
W0 0 000 0 00
00 & 000 0 00
0-u 0 000 0 00
0 0 -.+2000 0 0 0 0

This record is the canonic form of the record of a system of equations accepted in computational math-
ematics to construct grid-characteristic difference schemes. The system of equations (2) is hyperbolic, so

each A ; matrix has nine real eigenvalues and the basis of eigenvectors.

2.2. The grid-characteristic method. The grid-characteristic method [1, 7] is widely applied for the
numerical modeling of the problems of the dynamics of a deformable solid. At first, use is made of the
method of splitting by spatial coordinates, yielding three one-dimensional systems

Ou_, Ou

or  ox,’

Each of these systems is hyperbolic and has a full set of eigenvectors with real eigenvalues, so each sys-
tem can be rewritten as

Jj=123. 3)

Ou _ Qj_lAija_u’
ot Ox;

where matrix €Q; is a matrix composed of eignevectors and A ; is the diagonal matrix whose elements are
eigenvalues. For all the coordinates, matrix A appears as

A= diag{cpa —Cp,Cs, —C5,C5, —Css 0’ 0’ 0} s

where ¢, = (A + 2u)/p is the longitudinal sound velocity in the medium and ¢, = /p/p is the transverse
sound velocity.

After the substitution of variables v = Qu, each of systems (3) splits into nine independent scalar trans-
port equations (index j is omitted below, where possible)

ov + Aa—V =0.
ot ox
One-dimensional transport equations are solved by means of the method of characteristics or by ordi-
nary finite-difference schemes.

Once all the v components are transported, the solution itself is restored
n+1 -1_n+1
u =Q v .

Here, we used the TVD-difference schemes [8] of the 2nd order of accuracy. In the program, 15 different
limiters [9] have been implemented, in the calculations the limiter superbee, proposed in [10], was mostly
used:

0, () = max[0, min(2r,1), min(r,2)].

Use was also made of grid-characteristic monotonic difference schemes, whose principle of construction is
described in [2]. The program implements the schemes of the 2nd—4th order of accuracy; most calcula-
tions were carried out using the scheme of the 4th order of accuracy. We give it for the case of the numerical

solution of the one-dimensional linear elasticity equation u, + Au, =0, ¢ = At/h:
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up = u) — (A, — (A, — o(Ay — GA))),

A = 2i4(—2u,';+2 16Ul — 16l + 2!y,

A, = ﬁ(—uzﬂ 16Ul — 30ul, + 16ul_, — ul ),

1 n n n "
A3 = ﬁ(zum+2 — 4le+1 + 4um — Zum_z),
| n n n "
B = 24 Uiz = Ahyyyy + 6Uy — Aty + Uy, ).

In addition, use is made of the grid-characteristic criterion of monotony [2]. In the case of the positive
value A, the monotony criterion is

min {u,';,,u,'f,,l} <u"' < max {u,'f,,u,';,l}.
For negative values, A, it will be symmetrical. In the simplest implementation, use is made of the limiter
n o n n+l n n
it max{um,um,l}, u, > max{um,um,l},
m . n o n n+l . n n
min {um,um,l}, u, <min {um,um,l}.
In [2] it is shown that this limiter maintains the 4th order in domains where the solution behaves suffi-
ciently smoothly (the characteristic criterion holds), in case of larger gradients of the solution, the order

of the scheme is reduced to the 3rd.

3. PROGRAM COMPLEX

For modeling the problems of the propagation of wave disturbances in layered geological media, a pro-
gram complex has been created to solve the stated problems numerically by using the grid-characteristic
methods of various orders of approximation.

In the creation of the software package, one of the basic requirements was the possibility for computa-
tions at sufficiently large computation grids (about 1 billion nodes) in order to have an opportunity to
model in large domains of terrestrial rock. In this case, there are considerable requirements for both
resources of the processor time and short-term memory of the computer. For parallelization of the algo-
rithm work, the technology of writing the program in the apportioned MPI cluster medium [5] is used.

Figure 1 shows a graph of the acceleration of the program with an increased number of processor cores
on which the calculation is made.
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Fig. 1. Schedule of acceleration using MPI technology on a grid of 64 million nodes.
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In the acceleration test, a calculation grid with 64 million nodes was used. The test shows good accel-
eration (97.5 times on 144 cores) and the efficiency of operation of the parallel algorithm (up to 70% on
144 cores).

Since all the solvable problems are dynamic, in operating the program, large data arrays that represent
the distribution of physical parameters in different time moments need to be saved. To accelerate and sim-
plify the work with files in distributed systems, the technology of parallel operation with the MPI 10 file
system was applied, thus improving the efficiency and convenience for the end user while maintaining
large volumes of data.

4. RAYLEIGH WAVES

The Rayleigh waves appear on the boundary of a half-plane filled with a homogenous isotropic elastic
medium. Theoretically, these waves were found by Rayleigh in 1885, and they can exist near a free bound-
ary of a solid body bordering a vacuum or a sufficiently rarefied gas medium. The phase velocity of such
waves is directed in parallel to the boundary, and the near oscillating particles of the medium have both
transverse and longitudinal normals to the surface components of the displacement vector. The phase
velocity of the Rayleigh waves does not depend on the wave length; i.e., they are not dispersive. These
waves decay very fast by the depth of the semiplane [12], due to the presence of exponential factors with
the exponent —gaz, where ¢ is the wave number, z is the coordinate directed to the depth of the semiplane,
and a is the multiplier dependent on the parameters of the medium and the Rayleigh wave velocity. From
this it follows that the lower the wave length (a higher wave number) the faster is decay. It turns out that
the Rayleigh waves are superficial; i.e., their basic energy is concentrated at the boundary.

The Rayleigh waves are of great interest for seismologists since they are seen at a distance from the cen-
ter of earthquakes, and, like the Love waves, are the cause for destruction of surface facilities.
We use ¢, and ¢, to denote the longitudinal and transverse velocity, respectively, in the medium, and ¢,

to denote the Rayleigh waves. The correlation between these velocities is set by an equation in the third
degree [11]:

[ =8 —88" +8(2+yE—8(1+%) =0, 4
where
2
ézclzi/ctzv le_g s T]:c—p
n ¢

As is known, for all the elastic bodies the inequality 0 < 1 < ND) holds; taking this into account, the anal-
ysis of (4) shows that 0.8741 < \/E < 0.9554. Thus, the velocity of the Rayleigh waves differs little from the
velocity of the shear waves, but always less than it.

We can write down the explicit form of the roots of Eq. (4) for some special values of the elastic con-
stants of the medium [11]

l.y=0, n" =2 £=3-+5

2.x =1/3, 0’ =3, &=2(1 - 1/¥3—Cauchy medium.

The main purpose of this simulation was to obtain Rayleigh waves and to compare them by the numer-
ical method of velocities with the velocities from Eq. (4). This test involved the two special cases described
above.

The computational domain for all tests was a parallelepiped with dimensions 1500 x 500 x 200 m along
the x, y and z axes, respectively. On the top edge by axis z there was a boundary condition of absorption.
The grid step in all calculations was taken of an order of 10 m and the number of nodes in the grid was
about 160000. The integration step in time was chosen proceeding from the fulfillment of the Courant
condition; in all tests it is 0.001615 s.

The first calculation was performed with the following parameters of the medium: ¢, = 2000 m/s and

c, = «/Ec, ~ 2830 m/s. The rated speed of the Rayleigh waves in this case will be ¢y = V3 —«Bc, ~

0.874c, =~ 1748 m/s. Figure 2 shows a crosssection passing through the middle of the calculation domain
parallel to the x and z axes and normal to the y axis. The velocity modules are given for the time moments
t =0.2955and? =0.6412 s.

In the pictures the propagation of the surface wave is clearly seen: with the depth of penetration, the
wave is strongly damped and the maximum amplitude is at the medium surface. During this time the wave
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Fig. 2. Propagation of the Rayleigh wave in the first Fig. 3. Propagation of the Rayleigh wave in the sec-
case: (a) r = 0.2955 s, (b) t = 0.6412 s. ond case: (a) t = 0.2794 s, (b) t = 0.6089 s.

has propagated at 600 m, it is easy to calculate its phase velocity: ¢ = 1736 m/s. This figure is closely cor-
related to the theoretical value (1748 m/s) obtained earlier.

In the second calculation, the cross-section velocity was also the same and the longitudinal ¢, = Je, ~

3464 m/s; the theoretical velocity of the Raileigh wave in this case will be cg=+/2(1 — 1/ V3 .~ 0.91%c¢, =
1839 m/s. Figure 3 presents similar cross sections for the time moments f = 0.2794 and r = 0.6089 s.
The wave picture is similar to the picture obtained in the former case, it is also easy to obtain the value

of the velocity of the wave ¢ = 1821 m/s, which well agrees with the theoretical value. Base on the obtained
results, it is possible to conclude that the calculation data agree with the theory.

5. LOVE WAVES

In layered media the appearance of a certain type of waves, i.e., Love waves, is possible. The shear vec-
tor in such waves is parallel to the boundary of the division of the media and is normal to the direction of
the propagation; i.e., Love waves have horizontal polarization. Unlike the Rayleigh waves arising in the
same half-space with the free boundary, the Love waves arise in elastic layer type structures on an elastic
half-space. The theory of these eponymous waves was given by Love in 1911. In seismic practice, these
waves are well known, as they are the major cause for destruction of the base plates of facilities and for the
appearance of large cracks and rifts on the earth’s surface.

To get the expression for the wave speed in an explicit form [11] is a problem; we therefore define the
wave by indirect signs and check the correlation of the speed and wave length to fulfill the Love wave equa-
tion. The speed of the Lave wave propagation will be denoted by c;. Then, the relationship

Cn <Cp <Cp, (3)

where ¢, and ¢,, are cross-sectional sound velocities for the upper layer and half-space, respectively, is ful-
filled for it. From this it follows that for existence of the Love waves, it is necessary that the cross-sectional
sound velocity in the matter of the layer is less than the cross-sectional sound velocity in the half-space
matter. Also, unlike the Rayleigh waves, the Love waves have dispersion; i.e., they depend on frequency
and do not keep the form of the impulse. The wave amplitude in the half-space attenuates exponentially.

We denote through H the thickness of the upper layer, ® is the angular frequency of the Love wave,

Xlz = wz/ c,zl, Xi =0 / c,22 . Then, the finite number of the Love waves (number of possible harmonics) in the
superficial layer is determined by the relation

N =[H\xl = 3fx]+1. (©)

Here, [a] denotes the integer part of number a. Substituting into (6) the expression for , and y,, and
taking into account ® = 2mc, /A, , where A, is the length of the Love wave, we obtain

N:FHCL /%-%}1. (7)
A Nea ep

We write the equation determining the properties of the surface Love waves:
1/2
tann = (1o/u) [ 0uH)’ = 0H)’ =0’ m (8)

Here, p, and p, are elastic Lame constants for the half-space and the layer, respectively, n = Xlz . Z;ZH

and &’ = (o2/ ¢;. This equation determines the correlation between velocity and the Love wave’s length.

The main target of simulation was to get the Love waves in the near-surface layer and determine by the
indirect attributes described above whether the obtained wave is actually a Love wave.
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Fig. 4. Propagation of the Love wave: (a) = 0.258 s, (b) r=0.347 s, (c) t=0.436s, (d) r=0.525 s.
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Fig. 5. Component y of the medium speed at the layer surface: (a) t=0.258's, (b) t=10.347 s, (c) t=0.436s, (d) t=0.525s.

The calculated area has the aspect of two parallelepipeds, presenting the upper layer and low half-
space; their sizes are 1500 x 500 x 50 m (H = 50 m) and 1500 x 500 x 150 m by axes x, y, and z, respectively.
On the upper face of the layer, the boundary condition was exposed by axis z, and on the other faces of the
layer and half-space, the boundary condition of absorption was established. Between the layer and half-
space, the condition of the contact boundary is established. The grid step was equal to 10 m, the number
of nodes in the grid was about 170000. The integration step in time was chosen proceeding from the ful-
fillment of the Courant condition; in this text, it is 0.001615 s.

In the calculation, the following parameters of the medium were used (index 1 refers to the upper layer,
index 2 refers to the half-space): ¢, = 3000 m/s, ¢,, = 2000 m/s, ¢, = 6000 m/s, ¢,, = 3000 m/s, and p, = p, =
2500 kg/m?. Figure 4 shows the section passing through the middle of the computational domain, parallel

to axes x and z and normal to axis y. The shaded part shows the y components of the velocity for the time
moments 0.258, 0.347, 0.436, and 0.525 s.

As seen from the graphs, the obtained wave has horizontal polarization and attenuates very soon in the
half-space. The propagation occurs along the surface layer and the form of impulse changes. It is easy to
calculate the velocity of the obtained wave: ¢ = 600/(0.525 —0.258) = 2247 m/s, as is seen, satisfies cor-
relation (5).

For a more detailed study, we present one-dimensional graphs of the y component of velocity near the
layer surface along the x axis for analogous time moments; they are shown in Fig. 5.

In the graphs the value of the x and z components are not shown since actually they are zero. The dis-
turbance is only seen in the y component of the velocity. Over all the time of computation seen one period
of the wave is well, although the form of impulse changes. The length of the obtained wave is of an

A, =140 m order, which is seen from the graph.

Substituting into formula (7) the obtained values, i.e., velocity of propagation, length of wave and
parameters of the computation medium, we obtain the Love wave number: N = [0.5992] +1 =1; this
shows that there should exist only one harmonic and equation (8) has only one real root.
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Parameters of a layered medium

H,m V,, km/s V., km/s
300 4.19 2.79
400 4.65 3.1
500 5.85 3.5

2800 6.13 3.9

Equation (8) is transcendental; thus, it is not possible to obtain explicitly the value for the angular fre-
quency of the Love wave. We find an approximated value of the angular frequency of the Love wave from

the equation numerically. Thus, .., = 107.7 Hz. Earlier, the value of the Love wave length, A; =140 m,
had been already obtained; from this we have the experimental values of the frequency: ®,,, = 2nc; /A, =
101 Hz. It is seen that the theoretical value differs from the experimental one by not more than 10%.

6. SIMULATION OF PROPAGATION OF DISTURBANCES
FROM THE HYPOCENTER OF EARTHQUAKE

In this work, the process of the propagation of elastic waves arising in an earthquake in heterogenous
media is investigated.

For simulation the focus of the earthquake, a shear model of perturbation in the hypocenter was cho-
sen. In this model an angular domain 40 m wide and 500 m long with some nonzero velocity was set. One
part of the area is moving in one direction, the other in the opposite direction. Such a model physically
corresponds to the situation where there is a rift in the earth’s crust in which the travel in the earthquake
takes place. In this work, we compared the propagation of disturbances from two types of earthquakes, i.e.,
with horizontal and vertical shear.

The choice of the module value of velocity was made by comparison of the simulation data and real
experimental data. The data were taken from the earthquake that had taken place near Guadalupe Victoria
on July 6, 2010. According to estimates by the automatic system, the center of the earthquake was at a
depth of 1.5 km. From the map of maximum velocities, it is known that maximal velocities of the soil on
the earth’s surface were of an order of 1 cm/s. By assigning different values of velocity in the focus of the
earthquake and using numerical simulation, it was found that to obtain the amplitudes of velocities on the
surface of the same order, it is necessary to assign the speed of the initial perturbation equal to 10 cm/s.

Simulation of the propagation of waves in an earthquake occurring in a layered medium was per-
formed. The density of all the layers was taken as constant and equal to 2500 kg/m?. The thicknesses of the
layers and the velocities of longitudinal and transversal waves are given in Table 1.

Figure 6 shows the distributions of the velocity
module in the propagation of waves from the hypo-
center to the day surface for earthquakes with horizon-
tal and vertical shears.

The results are presented for the same moments of
time. The strong second front of the transversal wave is
clearly seen; it has a lower velocity and it reaches the
earth’s surface later. Also noticeable are the retractions
from various geological layers. The pictures from dif-
ferent perturbation views differ and have good qualita-
tive agreement with the experimental data.

7. CONCLUSIONS

The computations carried out show the possibility
of using the developed numerical methods for simula-
tion of various seismic phenomena and the passage of
elastic waves in complicated constructions. The used

Fig. 6. Results of modeling for an earthquake with 8 s : >
horizontal and vertical shear (from top to bottom). grid-characteristic method on parallelepiped grids
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makes it possible to correctly stage conditions on the boundaries of the integration domain and on the
boundaries of the contacts of grids and, due to the developed grid-characteristic scheme of a higher order
of accuracy, to simulate dynamic wave processes in large computation domains. The combination of rect-
angular grids makes it possible to set the layered media and this allows application of this method to sim-
ulate the Rayleigh and Love waves; the obtained results have yielded good agreement with the theory. The
simulation of a disturbance from the hypocenter of the earthquake to the earth’s surface was made in a
layered heterogeneous geological medium. The created software complex is parallelized to work in the
medium of the distributed cluster and optimized for work with large arrays of data.
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