
By Samaya Madhavan, M. Tim Jones

Updated January 24, 2021 | Published September 7,

2017

IBM Developer

Article

Deep learning

architectures
The rise of artificial intelligence

Save Like S
it

e
 f

e
e

d
b

a
c

k

Connectionist architectures have existed for

more than 70 years, but new architectures

and graphical processing units (GPUs) brought

them to the forefront of artificial intelligence.

Deep learning isn't a single approach but

rather a class of algorithms and topologies

that you can apply to a broad spectrum of

problems.

While deep learning is certainly not new, it is

experiencing explosive growth because of the

intersection of deeply layered neural

networks and the use of GPUs to accelerate

their execution. Big data has also fed this

growth. Because deep learning relies on

training neural networks with example data

and rewarding them based on their success,

the more data, the better to build these deep

learning structures.

The number of architectures and algorithms

S
it

e
 f

e
e

d
b

a
c

k

The number of architectures and algorithms

that are used in deep learning is wide and

varied. This section explores six of the deep

learning architectures spanning the past 20

years. Notably, long short-term memory

(LSTM) and convolutional neural networks

(CNNs) are two of the oldest approaches in

this list but also two of the most used in

various applications.

This article classifies deep learning

architectures into supervised and

unsupervised learning and introduces several

S
it

e
 f

e
e

d
b

a
c

k

popular deep learning architectures:

convolutional neural networks, recurrent

neural networks (RNNs), long short-term

memory/gated recurrent unit (GRU), self-

organizing map (SOM), autoencoders (AE) and

restricted Boltzman machine (RBM). It also

gives an overview of deep belief networks

(DBN) and deep stacking networks (DSNs)

Artificial neural network (ANN) is the

underlying architecture behind deep learning.

Based on ANN, several variations of the

algorithms have been invented. To learn about

the fundamentals of deep learning and

artifical neural networks, read the

introduction to deep learning article.

Supervised deep

learning

S
it

e
 f

e
e

d
b

a
c

k

Supervised learning refers to the problem

space wherein the target to be predicted is

clearly labelled within the data that is used for

training.

In this section, we introduce at a high-level

two of the most popular supervised deep

learning architectures - convolutional neural

networks and recurrent neural networks as

well as some of their variants.

Convolutional neural

networks

A CNN is a multilayer neural network that was

biologically inspired by the animal visual

cortex. The architecture is particularly useful

in image-processing applications. The first

CNN as c eated b Yann LeC n; at the time

S
it

e
 f

e
e

d
b

a
c

k

CNN was created by Yann LeCun; at the time,

the architecture focused on handwritten

character recognition, such as postal code

interpretation. As a deep network, early layers

recognize features (such as edges), and later

layers recombine these features into higher-

level attributes of the input.

The LeNet CNN architecture is made up of

several layers that implement feature

extraction and then classification (see the

following image). The image is divided into

receptive fields that feed into a convolutional

layer, which then extracts features from the

input image. The next step is pooling, which

reduces the dimensionality of the extracted

features (through down-sampling) while

retaining the most important information

(typically, through max pooling). Another

convolution and pooling step is then

performed that feeds into a fully connected

multilayer perceptron. The final output layer

of this network is a set of nodes that identify

S
it

e
 f

e
e

d
b

a
c

k

features of the image (in this case, a node per

identified number). You train the network by

using back-propagation.

The use of deep layers of processing,

convolutions, pooling, and a fully connected

classification layer opened the door to various

new applications of deep learning neural

networks. In addition to image processing, the

CNN has been successfully applied to video

recognition and various tasks within natural

language processing.

Example applications: Image recognition,

video analysis, and natural language

processing

S
it

e
 f

e
e

d
b

a
c

k

Recurrent neural

networks

The RNN is one of the foundational network

architectures from which other deep learning

architectures are built. The primary difference

between a typical multilayer network and a

recurrent network is that rather than

completely feed-forward connections, a

recurrent network might have connections

that feed back into prior layers (or into the

same layer). This feedback allows RNNs to

maintain memory of past inputs and model

problems in time.

RNNs consist of a rich set of architectures

(we'll look at one popular topology called

LSTM next). The key differentiator is feedback

within the network, which could manifest

S
it

e
 f

e
e

d
b

a
c

k

within the network, which could manifest

itself from a hidden layer, the output layer, or

some combination thereof.

S
it

e
 f

e
e

d
b

a
c

k

S
it

e
 f

e
e

d
b

a
c

k

RNNs can be unfolded in time and trained

with standard back-propagation or by using a

variant of back-propagation that is called

back-propagation in time (BPTT).

Example applications: Speech recognition and

handwriting recognition

LSTM networks

The LSTM was created in 1997 by Hochreiter

and Schimdhuber, but it has grown in

popularity in recent years as an RNN

architecture for various applications. You'll

find LSTMs in products that you use every day,

such as smartphones. IBM applied LSTMs in

IBM Watson® for milestone-setting

conversational speech recognition.

S
it

e
 f

e
e

d
b

a
c

k

The LSTM departed from typical neuron-

based neural network architectures and

instead introduced the concept of a memory

cell. The memory cell can retain its value for a

short or long time as a function of its inputs,

which allows the cell to remember what's

important and not just its last computed

value.

The LSTM memory cell contains three gates

that control how information flows into or out

of the cell. The input gate controls when new

information can flow into the memory. The

forget gate controls when an existing piece of

information is forgotten, allowing the cell to

remember new data. Finally, the output gate

controls when the information that is

contained in the cell is used in the output

from the cell. The cell also contains weights,

which control each gate. The training

algorithm, commonly BPTT, optimizes these

S
it

e
 f

e
e

d
b

a
c

k

weights based on the resulting network

output error.

Recent applications of CNNs and LSTMs

produced image and video captioning systems

in which an image or video is captioned in

natural language. The CNN implements the

image or video processing, and the LSTM is

trained to convert the CNN output into natural

language.

Example applications: Image and video

captioning systems

S
it

e
 f

e
e

d
b

a
c

k

GRU networks

In 2014, a simplification of the LSTM was

introduced called the gated recurrent unit.

This model has two gates, getting rid of the

output gate present in the LSTM model. These

gates are an update gate and a reset gate. The

update gate indicates how much of the

previous cell contents to maintain. The reset

gate defines how to incorporate the new input

with the previous cell contents. A GRU can

model a standard RNN simply by setting the

reset gate to 1 and the update gate to 0.
S

it
e

 f
e

e
d

b
a

c
k

The GRU is simpler than the LSTM, can be

trained more quickly, and can be more

efficient in its execution. However, the LSTM

can be more expressive and with more data

can lead to better results.

Example applications: Natural language text

compression, handwriting recognition, speech

recognition, gesture recognition, image

S
it

e
 f

e
e

d
b

a
c

k

captioning

Unsupervised

deep learning

Unsupervised learning refers to the problem

space wherein there is no target label within

the data that is used for training.

This section discusses three unsupervised

deep learning architectures: self-organized

maps, autoencoders, and restricted

boltzmann machines. We also discuss how

deep belief networks and deep stacking

networks are built based on the underlying

unsupervised architecture.

Self-organized maps

S
it

e
 f

e
e

d
b

a
c

k

g p

Self-organized map (SOM) was invented by Dr.

Teuvo Kohonen in 1982 and was popularly

known as the Kohonen map. SOM is an

unsupervised neural network that creates

clusters of the input data set by reducing the

dimensionality of the input. SOMs vary from

the traditional artificial neural network in

quite a few ways.

S
it

e
 f

e
e

d
b

a
c

k

The first significant variation is that weights

serve as a characteristic of the node. After the

inputs are normalized, a random input is first

chosen. Random weights close to zero are

initialized to each feature of the input record.

These weights now represent the input node.

Several combinations of these random

weights represent variations of the input

node. The euclidean distance between each of

these output nodes with the input node is

calculated. The node with the least distance is

declared as the most accurate representation

of the input and is marked as the best

matching unit or BMU. With these BMUs as

center points, other units are similarly

calculated and assigned to the cluster that it

is the distance from. Radius of points around

BMU weights are updated based on proximity.

Radius is shrunk.

Next, in an SOM, no activation function is

S
it

e
 f

e
e

d
b

a
c

k

applied, and because there are no target

labels to compare against there is no concept

of calculating error and back propogation.

Example applications: Dimensionality

reduction, clustering high-dimensional inputs

to 2-dimensional output, radiant grade result,

and cluster visualization

Autoencoders

Though the history of when autoencoders

were invented is hazy, the first known usage

of autoencoders was found to be by LeCun in

1987. This variant of an ANN is composed of 3

layers: input, hidden, and output layers.

First, the input layer is encoded into the

hidden layer using an appropriate encoding

function. The number of nodes in the hidden

S
it

e
 f

e
e

d
b

a
c

k

u c o . e u be o odes e dde

layer is much less than the number of nodes

in the input layer. This hidden layer contains

the compressed representation of the original

input. The output layer aims to reconstruct

the input layer by using a decoder function.

S
it

e
 f

e
e

d
b

a
c

k

During the training phase, the difference

between the input and the output layer is

calculated using an error function, and the

weights are adjusted to minimize the error.

Unlike traditional unsupervised learning

techniques, where there is no data to

compare the outputs against, autoencoders

learn continuosly using backward

propagation. For this reason, autoencoders

are classified as self supervised algorithms.

Example applications: Dimensionality

reduction, data interpolation, and data

compression/decompression

Restricted Boltzmann

Machines

Tho gh RBMs became pop la m ch late

S
it

e
 f

e
e

d
b

a
c

k

Though RBMs became popular much later,

they were originally invented by Paul

Smolensky in 1986 and was known as a

Harmonium.

An RBM is a 2-layered neural network. The

layers are input and hidden layers. As shown

in the following figure, in RBMs every node in

a hidden layer is connected to every node in a

visible layer. In a traditional Boltzmann

Machine, nodes within the input and hidden

layer are also connected. Due to

computational complexity, nodes within a

layer are not connected in a Restricted

Boltzmann Machine.

S
it

e
 f

e
e

d
b

a
c

k

During the training phase, RBMs calculate the

probabilty distribution of the training set using

a stochastic approach. When the training

begins, each neuron gets activated at random.

Also, the model contains respective hidden

and visible bias. While the hidden bias is used

in the forward pass to build the activation, the

S
it

e
 f

e
e

d
b

a
c

k

p ,

visible bias helps in reconstructing the input.

Because in an RBM the reconstructed input is

always different from the original input, they

are also known as generative models.

Also, because of the built-in randomness, the

same predictions result in different outputs.

In fact, this is the most significant difference

from an autoencoder, which is a deterministic

model.

Example applications: Dimensionality

reduction and collaborative filtering

Deep belief networks

The DBN is a typical network architecture, but

includes a novel training algorithm. The DBN

is a multilayer network (typically deep and

including many hidden layers) in which each

S
it

e
 f

e
e

d
b

a
c

k

including many hidden layers) in which each

pair of connected layers is an RBM. In this

way, a DBN is represented as a stack of RBMs.

In the DBN, the input layer represents the raw

sensory inputs, and each hidden layer learns

abstract representations of this input. The

output layer, which is treated somewhat

differently than the other layers, implements

the network classification. Training occurs in

two steps: unsupervised pretraining and

supervised fine-tuning.

S
it

e
 f

e
e

d
b

a
c

k

In unsupervised pretraining, each RBM is

trained to reconstruct its input (for example,

the first RBM reconstructs the input layer to

the first hidden layer). The next RBM is trained

similarly, but the first hidden layer is treated

as the input (or visible) layer, and the RBM is

trained by using the outputs of the first hidden

layer as the inputs. This process continues

S
it

e
 f

e
e

d
b

a
c

k

until each layer is pretrained. When the

pretraining is complete, fine-tuning begins. In

this phase, the output nodes are applied

labels to give them meaning (what they

represent in the context of the network). Full

network training is then applied by using

either gradient descent learning or back-

propagation to complete the training process.

Example applications: Image recognition,

information retrieval, natural language

understanding, and failure prediction

Deep stacking

networks

The final architecture is the DSN, also called a

deep convex network. A DSN is different from

traditional deep learning frameworks in that

although it consists of a deep network, it's

act all a deep set of indi id al net o ks

S
it

e
 f

e
e

d
b

a
c

k

actually a deep set of individual networks,

each with its own hidden layers. This

architecture is a response to one of the

problems with deep learning, the complexity

of training. Each layer in a deep learning

architecture exponentially increases the

complexity of training, so the DSN views

training not as a single problem but as a set of

individual training problems.

The DSN consists of a set of modules, each of

which is a subnetwork in the overall hierarchy

of the DSN. In one instance of this

architecture, three modules are created for

the DSN. Each module consists of an input

layer, a single hidden layer, and an output

layer. Modules are stacked one on top of

another, where the inputs of a module consist

of the prior layer outputs and the original

input vector. This layering allows the overall

network to learn more complex classification

than would be possible given a single module.

S
it

e
 f

e
e

d
b

a
c

k

The DSN permits training of individual

modules in isolation, making it efficient given

the ability to train in parallel. Supervised

training is implemented as back-propagation

f h d l h h b k i

S
it

e
 f

e
e

d
b

a
c

k

for each module rather than back-propagation

over the entire network. For many problems,

DSNs can perform better than typical DBNs,

making them a popular and efficient network

architecture.

Example applications: Information retrieval

and continuous speech recognition

Going further

Deep learning is represented by a spectrum of

architectures that can build solutions for a

range of problem areas. These solutions can

be feed-forward focused or recurrent

networks that permit consideration of

previous inputs. Although building these types

of deep architectures can be complex, various

open source solutions, such as Caffe,

Deeplearning4j, TensorFlow, and DDL, are

available to get you up and running quickly

S
it

e
 f

e
e

d
b

a
c

k

available to get you up and running quickly.

Legend

Artificial Intelligence Deep learning

Machine Learning Data Science

This content also appears in:

Categories

Table of Contents

S
it

e
 f

e
e

d
b

a
c

k

Recommended

An introduction to the Model

Asset eXchange models

Series

December 1, 2021

Tutorial

S
it

e
 f

e
e

d
b

a
c

k

Build models using Jupyter

Notebooks in IBM Watson

Studio

May 31, 2021

Creating SPSS Modeler flows

in Watson Studio

Tutorial

May 31 2021

S
it

e
 f

e
e

d
b

a
c

k

May 31, 2021

Digital Developer Conference Data & AI

2021

Conference

May 13, 2021

Data visualization,

preparation, and

transformation using IBM

Watson Studio

Tutorial

S
it

e
 f

e
e

d
b

a
c

k

Watson Studio

December 15, 2020

Build a cognitive IoT app in

just 7 steps

Tutorial

December 5, 2019

S
it

e
 f

e
e

d
b

a
c

k

Build

Smart

Build

Secure

IBM

Developer

About

FAQ

Third-

party

notice

Follow

Us

Twitter

LinkedIn

Facebook

YouTube

Explore

Newsletters

Code

patterns

APIs

Articles

Tutorials

Open

source

projects

Videos

Events

S
it

e
 f

e
e

d
b

a
c

k

Community

Career Opportunites

Privacy

Terms of use

Accessibility

Cookie preferences

Sitemap

S
it

e
 f

e
e

d
b

a
c

k

