San José State University

Math 253: Mathematical Methods for Data Visualization

Isometric Feature Mapping (ISOmap)

Dr. Guangliang Chen

Briefly, ISOmap is MDS combined with a special metric, called **geodesic distance**, for reducing the dimensionality of data sampled from a smooth manifold:

- **Paper**: A Global Geometric Framework for Nonlinear Dimensionality Reduction, J. B. Tenenbaum, V. de Silva and J. C. Langford, Science 290 (5500): 2319–2323, December 2000
- Website: https://web.mit.edu/cocosci/isomap/isomap.html

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 3/14

Motivation

Consider applying PCA to the Swissroll data. There are the following drawbacks:

- The PCA dimension needs to be higher, and sometimes much higher, than the manifold dimension (otherwise PCA may project faraway points along the manifold to nearby locations);
- PCA cannot capture the curved dimensions (its principal directions are generally not meaningful).

The ISOmap approach to dimension reduction

Instead of preserving the Euclidean distance, we will apply MDS to preserve the **geodesic distance**, which

- captures the true, nonlinear geometry corresponding to the curved dimension
- allows to see the transitioning along the manifold (and thus the global structure).

How to find geodesic distances

The geodesic distance of two data points that live in a manifold is the shortest distance along the manifold.

On a sphere, it is just the great-circle distance.

The exact geodesic distances are often impossible to find (unless we know the true manifold).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 6/14

In practical settings where we are only given a data set X sampled from an unknown manifold \mathcal{M} , we can approximate the true geodesic distances $d_{\mathcal{M}}(i,j)$ by the shortest-path distances $d_G(i,j)$ on a nearest-neighbor graph G built on the data set.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 7/14

Detailed steps:

1. Build a neighborhood graph G from the given data by connecting only "nearby points" with edges weighted by their Euclidean distances, i.e.,

$$d_X(i,j) = \|\mathbf{x}_i - \mathbf{x}_j\|$$
 if $\mathbf{x}_i, \mathbf{x}_j$ are "close" (and 0 otherwise)

where "closeness" is defined in one of the following ways:

- ϵ -ball approach: For each \mathbf{x}_i , another point \mathbf{x}_j is close if and only if $\|\mathbf{x}_i \mathbf{x}_j\| \le \epsilon$, or
- kNN approach: For each point x_i , x_j is close if it is among the the k nearest neighbors of x_i .

2. Apply Dijkstra's algorithm¹ with the nearest neighbor graph G (constructed by either method) to find the shortest-path distances for all pairs of data points $(d_G(i, j))$.

¹https://upload.wikimedia.org/wikipedia/commons/5/57/Dijkstra_Animation.gif

(Source: https://www.programiz.com/dsa/dijkstra-algorithm)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/14

The ISOmap algorithm

Input: Pairwise distances $d_X(i, j)$ of data points in the input space, embedding dimension $k \ge 1$, neighborhood graph method (ϵ -ball or kNN)

Output: A k-dimensional representation of the data $\mathbf{Y} \in \mathbb{R}^{n \times k}$.

- 1. Construct a neighborhood graph G from the given distances $d_{\boldsymbol{X}}(i,j)$ using the specified method
- 2. Compute the shortest-path distances $d_G(i, j)$ between all vertices of G by using Dijkstra's algorithm.
- 3. Apply MDS with $d_G(i, j)$ as input distances to find a k-dimensional representation \mathbf{Y} of the original data

Implementations

MATLAB:

- Code by the ISOmap authors: https://web.mit.edu/cocosci/isomap/isomap.html
- Matlab Toolbox for Dimensionality Reduction by van der Maaten: https://lvdmaaten.github.io/drtoolbox/
- MANI: Manifold Learning Toolkit (by T. Wittman): http://macs.citadel.edu/wittman/Research/Mani/mani.m

Python: https://scikit-learn.org/stable/modules/generated/sklearn. manifold.Isomap.html

Demonstration

See

https://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/slides/ ManifoldLearning.pdf

Summary

We presented the MDS method for dimensionality reduction which aims to preserve certain kind of distances of the data:

Special cases:

- Euclidean distance: PCA
- Geodesic distance: ISOmap